• Title/Summary/Keyword: Geosynthetics Application

Search Result 91, Processing Time 0.022 seconds

Case History of Sea Dyke Construction Using Geotextile Mat (토목섬유매트를 활용한 호안축조공사 사례 연구)

  • Park, Jeong-Jun;Kim, Sung-Hwan;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil construction applications. Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. This study tries to suggest the method of estimating valid stitching rate and the methodology of sea dyke construction over soft soils for more reasonable application of geotextile mat by studying tensile strength, bursting strength, punching strength, tear strength that are considered when analyzing and designing geotextile mat of a field.

  • PDF

Experimental Study on Recycled-Aggregate Porous Concrete Pile Method (순환골재 다공질 콘크리트말뚝 공법에 대한 실내모형실험)

  • You, Seung-Kyong;Lee, Chang-Min;Kim, Se-Won;Choi, Hang-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this research is to assess the application of recycled-aggregate that is gained from construction wastes as the material of compaction pile method. At the same time, the development of the new technique rectifies defects of the existing compaction pile method for soft ground improvement. In this research, laboratory chamber tests were carried out analyzing the effect of the soft ground improvement by porous concrete pile using recycled aggregate. Through the results of the laboratory chamber tests, the variations of settlement, excess pore pressure, and increment of the vertical stress with time and the behavior of the composite ground were elucidated.

  • PDF

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF

Reinforced Effects of Soil-nailed Structures by a Vertical Coupling of a Exposed Nail at a Front (지반네일보강토체 전면부에서 노출된 지반네일의 연직 방향 연결에 의한 보강효과)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • The soil nailing method have been developed on the basis of experimental works as well as theoretical backgrounds. As for the experimental research works, most of the data have been measured during the application of load in service. However, not only the soil-nailed structure behavior in service but also the failure behavior of the structure are the major concerns to evaluate and even establish a design method of soil-nailed walls. In this paper for the apprehension of behavior in the soil-nailed structure which the front of nail is connected, a relatively large-scale experiment was carried out to figure out the failure behavior of soil-nailed wall. A number of data have been acquired and analysis.

  • PDF

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

Effect of Ground Water Table on Deep Excavation Performance (지반 굴착시 지하수위가 벽체에 미치는 영향 분석)

  • Song, Ju-Sang;ABBAS, QAISAR;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2018
  • This study presents the experimental results on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to be checked the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments were performed by considering the wall stiffness, ground water table effect and ground relative density. The results were presented in form of contours and vector plot and further based on PIV analysis wall and ground displacement profile were drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation.

A Case Study on Application of Dewatering Method for Slope Stability (사면안정성 확보를 위한 지하수위 저하공법 적용사례 연구)

  • Han, Jung-Geun;Shin, Ju-Oek;Hong, Ki-Kwon;Jung, Sun-Kuk;Lee, Yang-Kyu;Kim, Byung-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • This paper presented that the causes on failure of reinforced slope are analyzed which based on the analyzed result. It had been applied that a method of lowering the groundwater using deepwell for sump. For the stability analysis on applied method, a series of numerical analysis were carried out. Therefore, it could be confirmed that slope stability was affected the dewatering ability of groundwater by the rainfall and this method which was confirmed very reasonable and suitable methods for slope stability, during heavy rainfall, in field.

  • PDF

The Mechanical Properties of Porous Concrete using Recycled Asphalt Aggregate (아스팔트순환골재를 이용한 투수성 콘크리트의 역학적 특성)

  • Lee, Dong-Wook;Yun, Jung-Mann;Kim, Nam-Sik;Kang, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • In this study, it is analyzed that mechanical properties and required strength of porous concrete according to the mixing ratio of cement, fine aggregate, and water/cement ratio in order to evaluate mechanical properties of porous concrete using recycled asphalt aggregate. Recycled asphalt aggregates of 13 mm were used without modification of aggregate grading to extend porous concrete application. The water/concrete ratio was poor mix and the range of compressive strength was 18.2 to 19.5 MPa. The average value of permeability showed 8.0E-02 cm/sec.

Characteristics of Reinforced Drainage Geotextile for Waste Treatment System (폐기물매립지용 보강형배수재의 배수특성에 관한 연구)

  • Jeong, Ji-Hoon;Lee, Jai-Young;Lee, Myung-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The settlement occurring during landfill construction often causes a damage of drainage system. Clogging can reduce the hydraulic conductivity of the Leachate Collection and Drainage System, which results in the increase of leachate level within the landfill. Consequently, the insulation ability of leachate will be decreased. The main purpose of this project is to estimate a newly designed reinforced drainage geotextile (RDG) combining non-woven fabrics with geogrid for minimizing the destruction of drainage layer as well as evaluating RDG's application in the leachate collection and drainage system. Thus, the project observed the permittivity changes of RDG, and evaluated the drainage ability using RDG in the leachate collection and drainage system.

  • PDF

Unsaturated Shear Strength Characteristics of Nakdong River Sand and Clay (낙동강 하상 모래와 점토의 불포화 전단강도 특성 평가)

  • Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • The shear strength characteristics of an unsaturated earth material are highly important not only for evaluating the seepage characteristics but also the stability of levee for a lifelong. In this study, unsaturated strength characteristics of Nak-dong river sand and clay that frequently used for the levee construction in southern province of Korea were analyzed using unsaturated triaxial compressive test. The strength characteristics due to the variation of matric suction were analyzed using multi-stage compression technique and the results were directly compared with the non-linear formulation for the apparent cohesion ($C_{max}$), and the friction component ${\varphi}^b$ were determined and evaluated from the test for the application of linear Mohr-Coulomb failure criteria. Cohesion and friction characteristics of the unsaturated levee material under various suction phases were also explored during this study.