• Title/Summary/Keyword: Geostatistical

Search Result 195, Processing Time 0.037 seconds

Evaluation of the Population Distribution Using GIS-Based Geostatistical Analysis in Mosul City

  • Ali, Sabah Hussein;Mustafa, Faten Azeez
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.83-92
    • /
    • 2020
  • The purpose of this work was to apply geographical information system (GIS) for geostatistical analyzing by selecting a semi-variogram model to quantify the spatial correlation of the population distribution with residential neighborhoods in the both sides of Mosul city. Two hundred and sixty-eight sample sites in 240 ㎢ are adopted. After determining the population distribution with respect to neighborhoods, data were inserted to ArcGIS10.3 software. Afterward, the datasets was subjected to the semi-variogram model using ordinary kriging interpolation. The results obtained from interpolation method showed that among the various models, Spherical model gives best fit of the data by cross-validation. The kriging prediction map obtained by this study, shows a particular spatial dependence of the population distribution with the neighborhoods. The results obtained from interpolation method also indicates an unbalanced population distribution, as there is no balance between the size of the population neighborhoods and their share of the size of the population, where the results showed that the right side is more densely populated because of the small area of residential homes which occupied by more than one family, as well as the right side is concentrated in economic and social activities.

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

Geostatistical Approach to Integrated Modeling of Iron Mine for Evaluation of Ore Body (철광산의 광체 평가를 위한 지구통계학적 복합 모델링)

  • Ahn, Taegyu;Oh, Seokhoon;Kim, Kiyeon;Suh, Baeksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.177-189
    • /
    • 2012
  • Evaluation of three-dimensional ore body modeling has been performed by applying the geostatistical integration technique to multiple geophysical (electrical resistivity, MT) and geological (borehole data, physical properties of core) information. It was available to analyze the resistivity range in borehole and other area through multiple geophysical data. A correlation between resistivity and density from physical properties test of core was also analyzed. In the case study results, the resistivity value of ore body is decreased contrast to increase of the density, which seems to be related to a reason that the ore body (magnetite) includes heavy conductive component (Fe) in itself. Based on the lab test of physical properties in iron mine region, various geophysical, geological and borehole data were used to provide ore body modeling, that is electrical resistivity, MT, physical properties data, borehole data and grade data obtained from borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, the SGS (sequential Gaussian simulation) method was applied to describe the varying non-homogeneity depending on region through the realization that maintains the mean and variance. With the geostatistical simulation results of geophysical, geological and grade data, the location of residual ore body and ore body which is previously reported was confirmed. In addition, another highly probable region of iron ore bodies was estimated deeper depth in study area through integrated modeling.

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF

Combining Geostatistical Indicator Kriging with Bayesian Approach for Supervised Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.382-387
    • /
    • 2002
  • In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.

  • PDF

Reserve Evaluation of Deep-Sea Manganese Nodules Using Fractal Model (프랙탈모델을 이용한 심해저 망간단괴의 매장량평가)

  • Yun, Chi Ho;Kwon, Kwang Soo;Yang, Seung Jin
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • The kriging model, one of the geostatistical models, has been used to evaluate the deep-sea manganese nodule deposits until now. The distribution of the manganese nodule deposits estimated by the model shows the smooth surface as well as much difference from the actual distribution. Subsequently, it estimates the deposit distribution roughly in terms of the limited data of surveyed zone. Therefore, this paper presents the interpretation methodology of the deep-sea manganese nodule deposit distribution by using the fractal model to overcome the problems caused by the geostatistical model. Also, the manganese nodule distributions are interpreted by using the manganese nodule data sampled in the GH82-4 zone, west longitude $165^{\circ}40^{\prime}-169^{\circ}00^{\prime}$, and south latitude $0^{\circ}00^{\prime}-2^{\circ}40^{\prime}$ neighboring Nova-Canton Trough in the Pacific Ocean which was surveyed by the Geological Survey of Japan in 1982.

  • PDF

Geostatistical analyses and spatial distribution patterns of tundra vegetation in Council, Alaska

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.53-60
    • /
    • 2014
  • The arctic tundra is an important ecosystem in terms of the organic carbon cycle and climate change, and therefore, detailed analysis of vegetation distribution patterns is required to determine their association. We used grid-sampling method and applied geostatistics to analyze spatial variability and patterns of vegetation within a two-dimensional space, and calculated the Moran's I statistics and semivariance to assess the spatial autocorrelation of vegetation. Spatially autocorrelated vegetation consisted of moss, Eriophorum vaginatum, Betula nana, and Rubus chamaemorus. Interpolation maps and cross-correlograms revealed spatial specificity of Carex aquatilis and a strong negative spatial correlation between E. vaginatum and C. aquatilis. These results suggest differences between the species in water requirements for survival in the arctic tundra. Geostatistical methods could offer valuable information for identifying the vegetation spatial distribution.

Interpolation of Missing Groundwater-Level Data at the National Groundwater Monitoring Wells (장기 관측 지하수위 결측자료 보완)

  • 정상용;심병완;강동환;원종호;김규범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.15-22
    • /
    • 2000
  • Long ranged groundwater-level data often have the missing intervals because of the trouble of monitoring systems at the national groundwater monitoring wells. Geostatistical methods are very useful for the supplement of the missing data. Ordinary kriging was applied for the interpolation of the missing groundwater-level data with a smooth sinusoidal variation. Conditional simulation was used for the reproduction of the missing data with high fluctuations. Two geostatistical methods produced the very accurate estimates at the missing intervals and reproduced their original variations. This fact is proved by the cross validation test and graphical method, respectively.

  • PDF

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

The Distribution Analysis of PM10 in Seoul Using Spatial Interpolation Methods (공간보간기법에 의한 서울시 미세먼지(PM10)의 분포 분석)

  • Cho, Hong-Lae;Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • A lot of data which are used in environment analysis of air pollution have characteristics that are distributed continuously in space. In this point, the collected data value such as precipitation, temperature, altitude, pollution density, PM10 have spatial aspect. When geostatistical data analysis are needed, acquisition of the value in every point is the best way, however, it is impossible because of the costs and time. Therefore, it is necessary to estimate the unknown values at unsampled locations based on observations. In this study, spatial interpolation method such as local trend surface model, IDW(inverse distance weighted), RBF(radial basis function), Kriging were applied to PM10 annual average concentration of Seoul in 2005 and the accuracy was evaluated. For evaluation of interpolation accuracy, range of estimated value, RMSE, average error were analyzed with observation data. The Kriging and RBF methods had the higher accuracy than others.