• Title/Summary/Keyword: Geostatistical

Search Result 195, Processing Time 0.023 seconds

Geostatistical algorithm for evaluation of primary and secondary roughness

  • Nasab, Hojat;Karimi-Nasab, Saeed;Jalalifar, Hossein
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-370
    • /
    • 2021
  • Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and RP increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.

Estimation of geomechanical parameters of tunnel route using geostatistical methods

  • Aalianvari, Ali;Soltani-Mohammadi, Saeed;Rahemi, Zeynab
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.453-458
    • /
    • 2018
  • Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Selection of Optimal Values in Spatial Estimation of Environmental Variables using Geostatistical Simulation and Loss Functions

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.437-447
    • /
    • 2010
  • Spatial estimation of environmental variables has been regarded as an important preliminary procedure for decision-making. A minimum variance criterion, which has often been adopted in traditional kriging algorithms, does not always guarantee the optimal estimates for subsequent decision-making processes. In this paper, a geostatistical framework is illustrated that consists of uncertainty modeling via stochastic simulation and risk modeling based on loss functions for the selection of optimal estimates. Loss functions that quantify the impact of choosing any estimate different from the unknown true value are linked to geostatistical simulation. A hybrid loss function is especially presented to account for the different impact of over- and underestimation of different land-use types. The loss function-specific estimates that minimize the expected loss are chosen as optimal estimates. The applicability of the geostatistical framework is demonstrated and discussed through a case study of copper mapping.

Application of Seismic Inversion to the Gas Field Development

  • Jo, Nam-Dae;Yang, Su-Yeong;Kim, Jae-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.47-56
    • /
    • 2009
  • Proper reservoir characterization is an integral part of formation evaluation, reserve estimation and planning of field development. Seismic inversion is a widely employed reservoir characterization tool that provides various rock properties of reservoir intervals. This study presents results of the inversion studies including Geostatistical Inversion carried out on the gas fields, offshore Myanmar. Higher resolution and multiple models can be produced by Geostatistical Inversion using input data such as pre-stack seismic data, well logs, petrophysical relationships and geological inferences for example reservoir shape and lateral extent. Detailed reservoir characterization was required for the development plan of gas fields, and the Geostatistical Inversion studies served as a basis for integrated geological modeling and development well planning.

  • PDF

Geostatistical Integration of Multi-Geophysical Data Measured at Different Ranges (측정 범위가 다른 다중 물리 탐사 자료의 지구통계학적 복합 해석)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Integrated interpretation of multi-geophysical data has been continuously used in terms that it has provided more confident information than the result from single-geophysical data. Especially, geostatistical integration has its own superiority that it is possible to deal with spatial characteristics as well as physical properties of survey data and the process of integration is clear. This paper further extends the previous work of geostatistical inversion for integrated interpretation. In this paper, we propose a new way of dealing with the case that the multi-geophysical data do not share the measurement range. According to the geostatistical kriging, the closer between the measurement points, the smaller kriging variance we get, and vice versa. We used this spatial properties as a weighting value to the process of geostatistical inversion for the geophysical data integration. An objective way to integrate different kinds of geophysical data measured at different ranges is provided with this algorithm.

Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping (지질 주제도 작성을 위한 지표 조사 자료와 부가 자료의 지구통계학적 통합)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.581-593
    • /
    • 2006
  • Various geological thematic maps have been generated by interpolating sparsely sampled ground survey data and geostatistical kriging that can consider spatial correlation between neighboring data has widely been used. This paper applies multi-variate geostatistical algorithms to integrate secondary information with sparsely sampled ground survey data for geological thematic mapping. Simple kriging with local means and kriging with an external drift are applied among several multi-variate geostatistical algorithms. Two case studies for spatial mapping of groundwater level and grain size have been carried out to illustrate the effectiveness of multi-variate geostatistical algorithms. A digital elevation model and IKONOS remote sensing imagery were used as secondary information in two case studies. Two multi-variate geostatistical algorithms, which can account for both spatial correlation of neighboring data and secondary data, showed smaller prediction errors and more local variations than those of ordinary kriging and linear regression. The benefit of applying the multi-variate geostatistical algorithms, however, depends on sampling density, magnitudes of correlation between primary and secondary data, and spatial correlation of primary data. As a result, the experiment for spatial mapping of grain size in which the effects of those factors were dominant showed that the effect of using the secondary data was relatively small than the experiment for spatial mapping of groundwater level.

The Effects of Spatial Patterns in Low Resolution Thematic Maps on Geostatistical Downscaling

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.625-635
    • /
    • 2011
  • This paper investigates the effects of spatial autocorrelation structures in low resolution data on downscaling without ground measurements or secondary data, as well as the potential of geostatistical downscaling. An advanced geostatistical downscaling scheme applied in this paper consists of two analytical steps: the estimation of the point-support spatial autocorrelation structure by variogram deconvolution and the application of area-to-point kriging. Point kriging of block data without variogram deconvolution is also applied for a comparison purpose. Experiments using two low resolution thematic maps derived from remote sensing data showing very different spatial patterns are carried out to discuss the objectives. From the experiments, it is demonstrated that the advanced geostatistical downscaling scheme can generate the downscaling results that well preserve overall patterns of original low resolution data and also satisfy the coherence property, regardless of spatial patterns in input low resolution data. Point kriging of block data can produce the downscaling result compatible to that by area-to-point kriging when the spatial continuity in block data is strong. If heterogeneous local variations are dominant in input block data, the treatment of the low resolution data as point data cannot generate the reliable downscaling result, and this simplification should not be applied to donwscaling.

Integrated Analysis of Gravity and MT data by Geostatistical Approach (지구통계학적 방법을 이용한 포텐셜 자료와 MT 자료의 복합 해석 연구)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yang, Jun-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.42-47
    • /
    • 2007
  • We have studied feasibility of the geostatistical approach to enhance the result of analysis of the sparsely obtained MT(Magnetotelluric) data by combining with gravity data. We have attempted to use geostatistics for integrating the MT data along with gravity data. To evaluate the feasibility of this approach, we have studied about interrelation between geological boundary and density distribution, and corrected density distribution for conversion to more sensitive to geological boundary by minimization of difference between z-directional variogram values of resistivity distribution obtained MT inversion and density distributions. Then, this method has been tested on model and field data. In model test, the results obtained were good agreement with real model. And in a real field data, the result of analysis demonstrate convincingly that our geostatistical approach is effective.

  • PDF

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.