• Title/Summary/Keyword: Geostationary Orbit

Search Result 258, Processing Time 0.027 seconds

Monte-Carlo Simulation for GEO-KOMPSAT2 Orbit Determination Accuracy (Monte-Carlo 시뮬레이션을 통한 정지궤도복합위성 궤도결정 정밀도 해석)

  • Park, Bong-Kyu;Ahn, Sang Il;Kim, Bang Yeop
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.40-47
    • /
    • 2013
  • GEO-KOMPSAT2 shall be designed to produce higher quality of image than that of COMS, and this requires the ground system to provide orbit data with high accuracy; better than 2km which is sort of high accuracy when it comes to geostationary satellite. For GEO-KOMPSAT2, KARI is planning to use ranging data for orbit determination, obtained from two ranging stations located in KARI and oversea country with long longitudinal baseline. This paper estimated achievable orbit determination accuracy using covariance analysis under assumption of using two ranging stations; SOC and available secondary tracking stations located in oversea countries. In addition to covariance analysis, in order to validate the analysis, the Monte-Carlo simulation has been performed and compared to the covariance analysis.

Validation on Solar-array Drive Assembly of GEO-KOMPSAT-2A Through In-orbit Operation (천리안2A호 태양전지판구동기 궤도상 운영 검증)

  • Park, Young-Woong;Park, Keunjoo;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • In this paper, there is summarized the validation of ground test results through the telemetry acquired during on-orbit initial activation on solar-array drive assembly(SDA) of GK2A launched at Dec-5, 2018. Especially, the decision logic of SDA initial position and the compensation logic are validated and confirmed. The SDA initial position is needed when GK2A enter to geostationary orbit from transfer orbit and the compensation logic is for the accumulated position error due to the open-loop control. Up to now, it is normal operating. Also the periodic offset between the geostationary orbit and Sun position is found that it is not checked on design phase, and then the proper threshold value is applied.

Bidirectional Factor of Water Leaving Radiance for Geostationary Orbit (정지궤도를 위한 해면방사휘도$(L_w)$의 양방향 계수 (bidirectional factor) 평가 연구)

  • Park, Jin-Kyu;Han, Hee-Jeong;Mun, Jeong-Eon;Yang, Chan-Su;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.181-186
    • /
    • 2006
  • Geostationary Orbit satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with everyone hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. However, Sun-synchronous polar-orbit satellites able to take a picture of target region same time a everyday. Thus Ocean signal is almost same. Accordingly, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite-sun-target points. This relative ratio called bidirectional factor. To find relationship between time and $[L_w]_N$/Bidirectional Factor differences, we are calculate solar position, geometry parameters. And reflectance, total radiance at the top of atmosphere(). And water leaving radiance, normalized water leaving radiance. And calculate bidirectional factor, that is the ratio of $[L_w]_N$ between target region and aiming the point. Then, we can make the bidirectional factor lookup table for one year imaging. So, we suggested for necessary to simulation experiment bidirectional factor in more various condition(wavelength and ocean/air condition).

  • PDF

A Study on Legal Issues in Telecommunication and Direct Broadcasting by Uses of Artificial Satellites (정보화(情報化) 시대(時代)에서의 통신(通信) 및 방송위성이용(放送衛星利用)에 따르는 법적(法的) 문제(問題) 분석(分析)과 대응방안 연구(硏究))

  • Lee, Young-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.9
    • /
    • pp.445-488
    • /
    • 1997
  • In the forthcoming 21st century new technical and scientific developments in outer space demands new approaches towards the problems arising in several fields of the use and exploitation of outer space including practical applications. The main purposes of this study are to analyze the legal problems of geostationary orbital position, telecommunication, direct television broadcasting by uses of artificial satellites. Communication via artificial Earth satellites was one of the first applications of space technology and is now one of the most developed field. From the technical and economic standpoints the advantages of world-wide satellites communication system are too all obvious. However, as the practical uses of space technology become more freguent, the legal conflicts among nations have become more divisive. One of the problem grown in uses of artificial satellites is that of the increasing shortage of suitable orbital slot positions for satellites, especially in geostationary orbit. Legal status of geostationary orbit as a limited resourece have to be reviewed in consideration of the side effect of the "First use, first-served" principle. The geostationary orbit is to be used for the benifits of all mankind and to be guaranteed for each state institutionaly in order to have eguitable access to the use of the orbit. Rapid increase of satellites broadcasting system in not only developed countries but also in developing countries opened up new possibilities with one another's scientific and cultural achievements. But there is also a potential danger that this powerful new instrument of influencing public opinion will be abused. Such a danger incudes spill-over or harmful interference. This controversial issue brings about the question whether prior consent from the receiver nation is needed to broadcast across international boundaries. Some states have rejected prior consent because it interfere with the free flow of information. Many other countries have opposed that opinion as an invasion and violation of sovereignty and as a violation of the 1967 Treaty and the UN Charter. Since declaration of the First Year of Outer Space in 1985, our country have promoted the plan of launching communication and broadcasting satellites. With the Koreasat launched in 1995 as the start, a real satellite-telecommunication era was opened in korea. According to this new development of our country, there will also rise various legal problems related to satellite broadcasting and telecommunication such as the inflow of foreign programs, the permeation of culture and the infringement of program copyright. Consequently the effective reactions to these problems in satellite-communication era should be tried including international cooperation. It is therefore to take into careful consideration the legal issues which may arise in outer space activities and to formulate positive policy on international cooperation with surrounding or advanced countries and international organization concerned. For this purpose the United Nations also prepares the UNISPACE III in 1999, to enable the international community to meet a more promising 21st century.

  • PDF

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

Residual Propellant Gauging Methods for Geostationary Satellites and Recent Technology Status (정지궤도위성의 잔여추진제량 측정방법 및 기술동향)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.870-877
    • /
    • 2014
  • Geostationary satellites undergo various orbital perturbations and this results in location change. Therefore, all the geostationary satellites use the thruster in order to control the location change. For this purpose, the suitable amount of liquid propellant is mounted and the amount of propellant is reduced as time goes by. This means that the lifetime of the satellite depends on the residual propellant amount. Therefore precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. In this paper, we introduce the propellant gauging methods used in the geostationary satellites and the propellant gauging method studied in the laboratory level.

Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II -North-South Station Keeping- (정지 통신 위성의 궤도에 대한 궤도요소의 진화 II -남북 방향의 궤도 보존-)

  • 최규홍;박재우;김경미
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • For a geostationary satellite north-south keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus, Ws, since these inclination elements represent the projection of the major axis and the inclination elements are obtained.

  • PDF

INTRODUCTION OF AOCS HARDWARE CONFIGURATION FOR COMS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hoon-Hee;Ju, Gwang-Hyeok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.207-210
    • /
    • 2007
  • A part of the big differences between LEO(Low Earth Orbit) and GEO(Geostationary Earth Orbit) satellite is that transfer orbit is used or not or what tolerance of the position on the mission orbit is permitted. That is to say, the transfer orbit is not used and the constraint of orbit position is not adapted on LEO satellite. Whereas for GEO satellite case, the transfer orbit shall be used due to the very high altitude and the satellite shall be stayed in the station keeping box which is permitted on the mission orbit. These phases are functions for AOCS mission. The aim of this paper is to introduce the AOCS hardware configuration for COMS (Communication, Ocean and Meteorological Satellite). The AOCS hardware of COMS consist of 3 Linear Analogue Sun Sensors (LIASS), 3 Bi-Axis Sun Sensors (BASS), 2 Infra-Red Earth Sensors (IRES), 3 Fiber Optical Gyroscopes (FOG), 5 momentum wheels and 14 thrusters. In this paper, each component is explained how to be used, how to locate and what relation between the AOCS algorithm and these components.

  • PDF

CURRENT STATUS OF COMS PROGRAM DEVELOPMENT

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of Meteorological Imager, Geostationary Ocean Color Imager and Ka band Satellite Communication Payload in a single spacecraft platform. In this paper, current status of Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program development is introduced. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into a single satellite to meet the overall satellite requirements. The COMS satellite critical design has been accomplished successfully to meet three different mission payloads. The platform is in Korea, KARI facility for the system integration and test. The expected launch target of COMS satellite is scheduled in June 2009.

  • PDF