• Title/Summary/Keyword: Geospatial data acquisition

Search Result 66, Processing Time 0.023 seconds

The Utilization of Photo Balloon System to GSIS Construction for Build-up a Group of Villages (집단마을 조성사업용 GSIS 구축을 위한 기구사진체계의 활용)

  • Lee, Jae-Kee;Lee, Hyun-Jik;Cho, Jae-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.67-79
    • /
    • 1994
  • Recently, the rapid economic growth has caused urban problems due to the increase of urban population and the rapid expansion as a result of exodus phenomenon in rural territories. In order to solve the problems, we need to perform rational and effective plans for national land development. Generally, we need speedy and accurate topographical information of the object area to go ahead with balanced national land development. Acquisition method for topographical data include utilization of existing geographic information such as national base maps and related thematic maps and grasping of accurate present condition of object area using aerial photographies or satellite images. When the object area is small, existing methods for acquiring topographical information reveals imitations in accuracy, speed and economic aspect. Therefore, development of a new method is in order. As a result of this study, we recogized that Photo Balloon System to be manufactured and digital ortho-map to be generated could be used to obtain a topographical information for small areas.

  • PDF

Time-critical Disaster Response by Cooperating with International Charter (국제재난기구 협업을 통한 적시적 재난대응)

  • Kim, Seong-Sam;Goo, Sin-Hoi;Park, Young-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.109-117
    • /
    • 2012
  • Recently, large-scale multi-hazards have been occurred in the various areas of the world. A variety of Earth observation sensors such as satellite EO, aerial and terrestrial LiDAR have been utilized for global natural disaster monitoring. Especially, commercial satellites which observe the Earth regularly and repeatedly, and acquire images with cm-level high spatial resolution enable its applications to extend in the fields of disaster management from advanced disaster monitoring to timely recovery. However, due to existing satellite operation systems with some limitations in almost real-time and wide regional disaster response, close international collaborations between satellite operating organizations like NASA, JAXA, KARI etc. have been required for collecting satellite images in time through a satellite platform with multi-sensors or satellite constellation. For responding domestic natural disaster such as heavy snowfall and extreme rainfall in 2011, this paper proposes a disaster management system for timely decision-making; rapid acquisition of satellite imagery, data processing, GIS analysis, and digital mapping through cooperation with NDMI in Korea and International Charter-Space and Major disasters.

Surface Information Acquisition for Asphalt Concrete Pavement Using Digital Video Camera (디지털 비디오카메라를 이용한 아스팔트 콘크리트 포장 노면 정보획득)

  • Seo, Jeong-Hoon;Seo, Dong-Ju;Lee, Jong-Chool;Lee, Sung-Rock
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.3 s.30
    • /
    • pp.51-59
    • /
    • 2004
  • In the study, there has been a sharp upward trend in road maintenance cost as the expansion of road networks increases. Running a pavement management system(PMS) is indispensable for efficient and scientific maintenance of the whole road networks with limited maintenance budgets. With a PMS, a maintenance plan should be drawn up after surface conditions are precisely examined and analyzed. The majority of the present PMSs are run by the fact that experts first examine surface conditions on sites, and then enter results into systems. However, considering the actual circumstances of the present time and the increase in paved road hereafter, it is inefficient that experts examine the whole paved roads in person and long-lasting PMSs can not be kept up. As a result, after analyzing the accuracy of 3-D coordinates representing road surfaces that was decided using multi orientation and digital photogrammetry, the average of standard errors turned out to be 0.0427m on the X-axis, 0.0527m on the Y-axis and 0.1539m on the Z-axis. It was found to be good enough to be put to practical use for maps drawn on scales below 1 :1000, which are being currently made and used within the country, and GIS data.

  • PDF

Comparison and analysis of spatial information measurement values of specialized software in drone triangulation (드론 삼각측량에서 전문 소프트웨어의 공간정보 정확도 비교 분석)

  • Park, Dong Joo;Choi, Yeonsung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.249-256
    • /
    • 2022
  • In the case of Drone Photogrammetry, the "pixel to point tool" module of Metashape, Pix4D Mapper, ContextCapture, and Global MapperGIS, which is a simple software, are widely used. Each SW has its own logic for the analysis of aerial triangulation, but from the user's point of view, it is necessary to select a SW by comparative analysis of the coordinate values of geospatial information for the result. Taking aerial photos for drone photogrammetry, surveying GCP reference points through VRS-GPS Survey, processing the acquired basic data using each SW to construct ortho image and DSM, and GCPSurvey performance and acquisition from each SW The coordinates (X,Y) of the center point of the GCP target on the Ortho-Image and the height value (EL) of the GCP point by DSM were compared. According to the "Public Surveying Work Regulations", the results of each SW are all within the margin of error. It turned out that there is no problem with the regulations no matter which SW is included within the scope.

Analysis of UAV Photogrammetric Method for Generation of Terrain Model and Ortho Image (지형모델 및 정사영상 제작을 위한 무인항공측량 기술 분석)

  • Um, Dae Yong;Park, Joon Kyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.8
    • /
    • pp.577-584
    • /
    • 2016
  • UAV(Unmaned Aerial Vehicle), which is autonomous flight without pilots. Recently, UAV is being applied to various fields such as video recording, aerial photogrammetry. In particular, UAV is getting a lot of attention in the field of space-related information because of it's data acquisition speed and economic feasibility. But analytical study of an unmanned air-side technologies are lacking. In this study, the research of equipment for the unmanned aerial surveys and UAV technologies and trend analysis for generation of terrain model and ortho image effectively were performed. As a result, the ways to improve the utilization field of unmanned aerial surveying and processing of fixed-wing and rotary-wing unmanned aircraft. were suggested. If analytical research on generation of terrain models and ortho image will be performed, production efficiency of the geospatial information industry is expected to be significantly increased.

Construction of Tree Management Information Using Point Cloud Data (포인트클라우드 데이터를 이용한 수목관리정보 구축 방안)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.427-432
    • /
    • 2020
  • In order to establish an effective forest management plan, it is necessary to investigate tree management information such as tree height and DBH(Diameter at breast height). However, research on convergence and application of data acquisition technology to improve the efficiency of existing forest survey methods is insufficient. Therefore, in this study, tree management information was constructed and analyzed using point cloud data acquired through a 3D scanner. Data on the study site was acquired using fixed and mobile 3D scanners, and the efficiency of the mobile 3D scanner was presented through comparison of working hours. In addition, tree management information for object management was constructed by classifying vegetation by object using point cloud data, and by constructing information on chest height diameter and height. As a result of the accuracy evaluation compared with the conventional measurement method, the difference in tree height was 0.02-0.09m and DBH was 0.01-0.04m. If information on the location of vegetation and crowns of each object is constructed through additional research in the future, the efficiency of the work related to forest management information construction can be greatly increased.

Research on Basic Investigation and Analysis for Iand Substitution Planing using High-resolution Satellite Imagery (환지계획 수립시 고해상 위성영상을 이용한 기초조사 및 분석에 관한 연구)

  • Choi, Seung Pil;Jeong, Cheol Ju;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Various data like digital maps(1/1,000 or 1/5,000), field surveying, online materials and literatures are used for the preliminary investigation for urban development such as the feasibility evaluation, the profitability analysis, the zoning proposal, the zoning designation, and the land replotting planning. There are a couple of urban development methods like an expropriation, a replotting, a mixed-used method. The replotting method requires the consideration of land replotting types based on topography and building condition, which is not easy to gather data for the preliminary investigation maintaining the security of development planning. There are limitations of a preliminary investigation using aerial photos to detect topographic and building changes at specific period. GIS data combined with high-resolution imagery has advantages over the current dataset, which come from easy acquisition of various spatial resolution satellite images, wide swath coverage, the choice of imagery resolution satisfying a usage purpose, economic benefit comparing to aerial photos, and the calculation of distance and area on imagery from image modeling. For these reasons, the proposed method in this study enables to perform the more appropriate preliminary investigation using more accurate information.

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.