• Title/Summary/Keyword: Geophysical exploration

Search Result 1,216, Processing Time 0.029 seconds

Review on the inversion Analysis of Geophysical Data (지구물리자료의 역산해석에 관한 개관)

  • Kim Hee Joon;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1999
  • This article reviews the development of geophysical inverse theory. In a series of articles published in 1967, 1968, and 1979, G. Backus and F. Gilbert a trade-off between model resolution and estimation errors in geophysical inverse problems, and gave a criterion to compromise the reciprocal relation. Although the criterion was not clear in the physical point of view, it had been extensively used in the interpretation of geophysical date in the 1970s. This was the starting point of the fruitful development of inverse theory in geophysics. A reasonable criterion to compromise the reciprocal relation was derived to solve linear problems by D. D. jackson in 1979, introducing the concept of a priori information about unknown model parameters. This Jackson's approach was extended to solve nonlinear problems on the basis o probabilistic approach to the inverse problems formulated by A. Tarantola and B. Vallete in 1982. At the end of 1980s ABIC (Akaike Bayesian Information Criterion) was introduced for selecting a more reasonable model in geophysics. Now the date inversion is regarded as the process of extracting new information from observed data, combining in with a priori information about model parameters, and constructing a more clear image of model.

  • PDF

Archaeological Investigations in Urban Areas through Combined Application of Surface ERT and GPR Techniques

  • Papadopoulos, Nikos;Yi, Myeong-Jong;Sarris, Apostolos;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-118
    • /
    • 2008
  • Among the geophysical methods, Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) comprise the most promising techniques in resolving buried archaeological structures in urban territories. In this work, two case studies which involve an integrated geophysical survey employing the surface three dimensional (3D) ERT and GPR techniques, in order to archaeologically characterize the investigated areas, are presented. Totally more than 4000 square meters were investigated from the test field sites, which are located at the centre of two of the most populated cities of the island of Crete, in Greece. The ERT and the GPR data were collected along dense and parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way applying specific filters to the data in order to enhance their information context. Finally, horizontal depth slices representing the 3D variation of the physical properties were created and the geophysical anomalies were interpreted in terms of possible archaeological structures. The subsequent excavations in one of the sites verified the geophysical results, enhancing the applicability of ERT and GPR techniques in the archaeological exploration of urban territories.

  • PDF

Characterization of Physical Properties for Mineral Exploration of High-grade Limestone in Pungchon Formation (풍촌층 고품위 석회석 광상 탐사를 위한 암석 물성 특성)

  • Shin, Seung Wook;Park, Samgyu;Cho, Seoung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • High-grade limestone applied to various chemical industries is abundant within upper Pungchon formation in Taebaeksan basin, South Korea. Geophysical exploration is one of the most efficient methods to investigate subsurface geological structure in an extensive area. Since the geophysical exploration for the high-grade limestone has rarely been conducted in Korea, its appropriate strategy has not been set up yet. In this study, we focused on to suggest the reasonable strategy and accumulate geophysical databases which are essential for interpreting geophysical images by characterizing laboratory physical properties of in-situ rocks. Hence, rocks were obtained from drilled cores consisting of lower Hwajeol formation, Pungchon formation, and dykes in Jeongseon area, Gangwon province. Geophysical laboratory experiments and petrography of the rocks were conducted. Since susceptibility values of the rocks in Pungchon Formation were obviously lower than those of upper Hwajeol and dykes, it is considered that the lithological boundaries could be distinguished by magnetic survey. In addition, electrical properties of the rocks in middle Pungchon formation were relatively different compared with those of upper/lower Pungchon formations. Thus, induced polarization is shown to be able to detect the high-grade limestone in upper Pungchon formation.

기고자 소개

  • 학회자료
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.47-47
    • /
    • 2003

A rock mass assessment procedure based on quantitative geophysical log analysis of coal measure sequences (탄층에 대한 정량적 물리검층에 기초한 암반 평가 과정)

  • Hatherly Peter;Medhurst Terry;Sliwa Renate;Turner Roland
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Geophysical logging is routinely undertaken as part of most coal mine exploration programs. Currently, the main application for the logs is to determine coal seam depth and to qualitatively estimate coal quality, lithology, and rock strength. However, further information can be obtained, if quantitative log interpretation is made. To assist in the uptake of quantitative interpretation, we discuss log responses in terms of the mineralogy of the clastic sedimentary rocks frequently found in the Australian black coal mining areas of the Sydney and Bowen Basins. We find that the log responses can be tied to the mineralogy with reasonable confidence. Ambiguities in the interpretation will be better resolved if a full suite of logs is run. A method for checking for internal consistency, by comparing calculated and observed velocities, is also described. A key driver for quantitative interpretation is geotechnical characterisation. We propose a classification system for clastic rocks that takes into consideration physical rock properties that can be inferred from geophysical logs.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Summarized Reviews on Geodetic Coordinate System and Map Projection for Practitioners in Exploration Geophysics (물리탐사 실무자를 위한 측지 좌표계와 지도 투영의 이해)

  • Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.236-248
    • /
    • 2016
  • In this review, the basic concepts of geodetic coordinate system and map projection are explained to practitioners in exploration geophysicists to enhance the understanding of geographic and projected coordinate system. The fundamental elements such as earth ellipsoid, geoid, geocentric and geodetic latitudes, rhumb line, and great circle are dealt with in detail. The geocentric and geodetic coordinate systems are also summarized neatly, together with coordinate conversion formulae. In addition, the concept and technique for datum transforms between local and world datum are presented, with special emphasis on Korean Geodetic System.

Development of Geophysical Data Management System (물리탐사자료 데이터베이스 시스템 구축 연구)

  • Lee, Tai-Sup;Hwang, Hak-Soo;Sun, Hee-Duck;Koo, Sung-Bon;Song, Yaung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The geophysical data management system was developed to meet both the increasing demands of geophysical data in the practical application of civil engineering, underground water survey, and environmental problems and needs for digital archive and quality control of geophysical data. The system for a data manager is developed under Client/Server (C/S) environment. This manager system is characterized by a relational geophysical database system using MS SQL-server, standardization of geophysical data format, the development of C/S interface program for Windows environment, and the development of transfer program module for the searched data. The system developed for a general user under the internet environment is characterized by Web service (URL:http//geophy.kigam.re.kr) and the development of plug-in module to visualize geophysical image data.

  • PDF

Geophysical Well Logs in Basaltic Volcanic Area, Jeju Island (제주 현무암 지역에서 물리검층 자료 해석)

  • Hwang, Se-Ho;Shin, Je-Hyun;Park, Ki-Hwa;Park, In-Hwa;Koh, Gi-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • A variety of geophysical well loggings have been conducted to investigate the geological characteristics for basaltic volcanic area in Jeju Island. Specially, there is no precedent case study using geophysical well loggings in Jeju Island. And so, the proper understandings for geological features of Jeju Island are the key to interpret geophysical well logs. Presently, seawater intrusion monitoring systems have been constructed for systematic development and conservation of groundwater resources. As the results of geophysical well loggings in this seawater intrusion monitoring boreholes, the responses of well logs for saturated zone have distinctly identified basalt sequences. In particular, neutron logging, gamma-gamma (density) logging, and resistivity logging have well exhibited the characteristics of lava flows and lithologic boundaries. In hyalocastite, porosity is high, and resistivity is low. Eventually, geophysical well logs are useful for securing sustainable development of groundwater in Jeju Island in that it has identified the characteristics of geological responses.