• Title/Summary/Keyword: Geometry effect

Search Result 1,394, Processing Time 0.024 seconds

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook;Namgung, Cheol;Lee, Jong-Ho;Lim, Young-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics (분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰)

  • Kim, Ju Youn;Park, Kweon Ha;Lee, Seung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.997-1002
    • /
    • 2012
  • Emission regulations have been strengthened step by step for marine engines. A noble measure is required both inside and outside of the combustion chamber. The combustion characteristics in cylinder have a very close relationship with the exhaust emission characteristics. Injection valve and nozzle hole geometry is an important factor for combustion. The study to improve the spray characteristics has concentrated on nozzle inlet geometry and nozzle hole diameter, but the exit geometry has not considered. In this study the nozzle exit angle variation was tested. The results show that the angle between $30^{\circ}$ and $60^{\circ}$ is more effective than the other cases.

A study on mathematical modeling and heat transfer analysis to predict weld bead geometry in horizontal fillet welding (수평필릿용접의 용접부 형상을 예측하기 위한 수학적 모델링 및 열전달 해석에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 1996
  • The horizontal filet welding is prevalently used in heavy and ship building industries to join the parts. The phenomena occurring in the horizonal fillet welding process are very complex and highly non-linear, so that its analysis is relatively difficult. Furthermore, various kinds of weld defect such as undercut, overlap, porosity. excess weld metal and incomplete penetration can be induced due to improper welding conditions. Among these defects, undercut, overlap and excess weld metal appear frequently in horizontal filet welding. To achieve a satisfactory weld bead geometry without weld defects, it is necessary to study the effect of welding conditions in the weld bead geometry. For analyzing the weld bead geometry with and without weld defects in horizontal fillet welding, a mathematical model was proposed in conjunction with a two-dimensional heat flow analysis adopted for computing the melting tone in . base metal. The reliability of the proposed model was evaluated through experiments. which showed that the proposed model was very effective for predicting the weld bead shape with or without weld defects in horizontal fillet welding.

  • PDF

Development of Formative Assessment Program in Geometry Area for the 1st Graders of Middle School (중학교 1학년 기하 영역 형성평가 프로그램 개발 및 효과 분석)

  • Ryu, Hyun-Ah;Lee, Bong-Ju;Yang, Myoung-Hee;Choe, Seung-Hyun;Byun, Hee-Hyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.1
    • /
    • pp.137-154
    • /
    • 2012
  • The purposes of this study are to develop the formative assessment program in geometry area for a 1st-grade class of middle school and to test the effect of this program. This formative assessment program was based on mathematics curriculum for the 1st graders of middle school. In addition, we examined how the 1st graders of middle school understand the geometric concepts by analyzing their response in the pretest and the posttest. This formative assessment program and the results of its analysis would be the useful information for the effective teaching and learning in geometry area for the 1st grades of middle school.

  • PDF

Effect of bridge lateral deformation on track geometry of high-speed railway

  • Gou, Hongye;Yang, Longcheng;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • This paper presents an analytical model to analyze the mapping relationship between bridge lateral deformation and track geometry of high-speed railway. Based on the rail deformation mechanisms, the deformation of track slab and rail at the locations of fasteners are analyzed. Formulae of rail lateral deformation are derived and validated against a finite element model. Based on the analytical model, a rail deformation extension coefficient is presented, and effects of different lateral deformations on track geometry are evaluated. Parametric studies are conducted to evaluate the effects of the deformation amplitude, fastener stiffness and mortar layer stiffness on the rail deformation. The rail deformation increases with the deformation of the girder, and is dependent on the spacing of the fasteners, the elastic modulus of the rail's material, and the moment of inertia of the rail's section.

Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame (난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성)

  • Lee, Dae-Hun;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

Development of Caliper System for Geometry PIG (지오메트리 피그용 캘리퍼 시스템 개발)

  • Yoo, H.R.;Kim, D.K.;Cho, S.H.;Park, S.H.;Park, S.S.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Park, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.228-234
    • /
    • 2001
  • NTMS(Non-contact Tilted-angle Measuring System) is developed by using the principle that the magnetic field of an anisotropic magnet's inner space is uniform and it's possible to measure the strength of the magnetic field using a linear hall effect sensor. In order to implement the caliper system of the geometry PIG(Pipeline Inspection Gauge) which has high accuracy and proper output voltage of the hall sensor without additional driving module or a signal amplifier, it is necessary to consider the size of the magnet, the inner space and back-yoke and the position of pin-hole in the magnet. So the optimal design method of the caliper system is proposed through analysis of NTMS's magnetic field adopting a FEM(Finite Element Method). The experimental results show that the developed caliper system can be used for the geometry pig with good performances.

  • PDF

The Effect of Network Geometry on Three- Dimensional Analysis in Close-Range Photogrammetry (근접사진측량의 망구성이 삼차원 위치해석에 미치는 영향)

  • 이진덕;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1990
  • The purpose of this study is to suggest possibility to analyze the three-dimensional positions of the whole surface of an object simultaneously and precisely by close-range photogrammetry. For this purpose, the geometry of network, namely imaging geometry and control configuration etc was considered, and then the whole surface of the object was analyzed by bundle adjustment through forma. lion of strip and block with which cover the whole surface of the object. As a result, we were able to prove possibility of the whole surface analysis of an object and to extract characteristics of accuracies in accordance with the number and configuration of control points. Also as desirable accuracies were able to be acquired even by employing configuration of only a few control point stationed on a limited surface, it is expected that the difficulties of control surveying will be able to be reduced considerably.

  • PDF

Two-dimensional fuel regression simulations with level set method for hybrid rocket internal ballistics

  • Funami, Yuki
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.333-348
    • /
    • 2019
  • Low fuel regression rate is the main drawback of hybrid rocket which should be overcome. One of the improvement techniques to this problem is usage of a solid fuel grain with a complicated geometry port, which has been promoted owing to the recent development of additive manufacturing technologies. In the design of a hybrid rocket fuel grain with a complicated geometry port, the understanding of fuel regression behavior is very important. Numerical investigations of fuel regression behavior requires a capturing method of solid fuel surface, i.e. gas-solid interface. In this study, level set method is employed as such a method and the preliminary numerical tool for capturing a hybrid rocket solid fuel surface is developed. At first, to test the adequacy of the numerical modeling, the simulation results for circular port are compared to the experimental results in open literature. The regression rates and oxidizer to fuel ratios show good agreements between the simulations and the experiments, after passing enough time. However, during the early period of combustion, there are the discrepancies between the simulations and the experiments, owing to transient phenomena. Second, the simulations of complicated geometry ports are demonstrated. In this preliminary step, a star shape is employed as complicated geometry of port. The slot number effect in star port is investigated. The regression rate decreases with increasing the slot number, except for the star port with many slots (8 slots) in the latter half of combustion. The oxidizer to fuel ratio increases with increasing the slot number.