• Title/Summary/Keyword: Geometry Textbook

Search Result 49, Processing Time 0.02 seconds

An analysis of the use of technology tools in high school mathematics textbooks based (고등학교 수학 교과서의 공학 도구 활용 현황 분석)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.263-286
    • /
    • 2024
  • With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

A Comparative Analysis on Research Trends of Secondary Mathematics Education between Korea and Overseas (국내외 수학교육 연구 동향 비교 분석)

  • Park, Seon-Yeong;Kim, Won-Kyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.285-308
    • /
    • 2011
  • The objective of this study is to review how researches on mathematics education are being conducted currently in Korea and overseas and to examine the current state of domestic researches on mathematics education from a broader view. Although many efforts have been made to understand trends in researches on mathematics education, there have been few in depth studies on research trends in overseas or for comparison between domestic and overseas trends. Thus, this study classified and analyzed 181 domestic articles between 2005 and 2009 in the journals and and 201 overseas articles in the journals and according to year, research area, research contents, school level, research method, and key words using the PME classification system with some modification. Through these analysis, we examined research trends on secondary mathematics education in Korea and overseas. The research findings are as follows. First, 'teaching learning process' was a spotlight area both at home and overseas, and 'realistic mathematics' and 'social cultural subjects' were not covered much either at home or overseas. 'Mathematical communication' occupied a very small portion in Korea but was a highly interesting area in overseas research. Second, research contents of interest were different between Korea and overseas. Research on general area was the mainstream. But geometry and statistics were mainly studied in Korea and algebra and analysis in overseas. Third, research related to middle school was twice more than that related to high school in Korea, But, research related to middle school was the same as high school in overseas. Fourth, qualitative research was the absolute majority both at home and overseas, and philosophical didactical analysis was used only in Korea. Fifth, the order of key words were problem solving - teacher - curriculum - creativity - textbook in Korea, but teacher - teaching - semiotic - affective factor - proo f- problem solving - technology in overseas.

Elementary Mathematics Education Research Trends in Japan - Focused on the last 10 years - (일본의 초등수학교육 연구 동향 - 최근 10년간을 중심으로 -)

  • Jin, Yeong Su;Kang, Hong Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.2
    • /
    • pp.341-355
    • /
    • 2014
  • The purpose of this study was to analyze the research trends of elementary mathematics education in Japan. For this purpose, 192 papers published by Japan Society of Mathematics Education for the last 10 years(2004-2013) were analyzed according to there criteria. First, as for research topics, the frequent topics in order were instructional design and methods (36.7%), analysis of curriculum and textbook, general studies, learners' perspectives and abilities, evaluation, teacher education, education engineering and parish. Second, the contents were researched by the order of number and operations (47.4%), geometry, regularity, measurement and probability and statistics. Finally, research subjects of this study were researched by the order of students(39.3%), teachers. Papers dealing with lower graders as well as pre-service teachers were rare. And article dealing with low-achievers and gifted students were not founded. On the basis of this result, we hope it will provide the follow-up and the idea of the elementary mathematics education in Korea and also help various and balanced development.

  • PDF

A Study on Reorganization of 'Pythagorean Theorem' in School Mathematics (학교수학에서 '피타고라스 정리' 관련 내용의 재구조화 연구)

  • Suh, Bo Euk
    • The Mathematical Education
    • /
    • v.57 no.2
    • /
    • pp.93-110
    • /
    • 2018
  • One of the biggest changes in the 2015 revised mathematics curriculum is shifting to the second year of middle school in Pythagorean theorem. In this study, the following subjects were studied. First, Pythagoras theorem analyzed the expected problems caused by the shift to the second year middle school. Secondly, we have researched the reconstruction method to solve these problems. The results of this study are as follows. First, there are many different ways to deal with Pythagorean theorem in many countries around the world. In most countries, it was dealt with in 7th grade, but Japan was dealing with 9th grade, and the United States was dealing with 7th, 8th and 9th grade. Second, we derived meaningful implications for the curriculum of Korea from various cases of various countries. The first implication is that the Pythagorean theorem is a content element that can be learned anywhere in the 7th, 8th, and 9th grade. Second, there is one prerequisite before learning Pythagorean theorem, which is learning about the square root. Third, the square roots must be learned before learning Pythagorean theorem. Optimal positions are to be placed in the eighth grade 'rational and cyclic minority' unit. Third, Pythagorean theorem itself is important, but its use is more important. The achievement criteria for the use of Pythagorean theorem should not be erased. In the 9th grade 'Numbers and Calculations' unit, after learning arithmetic calculations including square roots, we propose to reconstruct the square root and the utilization subfields of Pythagorean theorem.

The Meaning and Practical Uses of Tables in Finland Elementary Mathematics Textbooks and Its Implications for Developing Mathematics Textbooks (핀란드 수학교과서에 나타난 표의 의미와 용도, 그리고 교과서 구성을 위한 시사점)

  • Kim, Soomi
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.73-92
    • /
    • 2017
  • A table as an effective arrangement tool of a set of data has not been focused on as a single research subject despite of the fact that the table has been clearly one of learning and teaching elements of national math curriculum for a long time. I hope this article gets to be a starting point for future studies of tables. For this, the Finland elementary mathematics textbooks which use tables so often for many various purpose are chosen and analysed. As a result, it confirms that tables can be practical tools for developing different mathematical ideas in mathematics textbooks. Its applicable area is not limited on statistics but numbers and operations, geometry, measurement, ratio and rate. In addition, some ideas of the outlook, the size and dimension of tables, and the context of datum and etc are induced from the Finland elementary mathematics textbooks.

  • PDF

Augmented Reality based Learning System for Solid Shapes (증강현실 기반 입체도형 학습도구 시스템)

  • Yeji Mun;Daehwan Kim;Dongsik Jo
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.45-51
    • /
    • 2024
  • Recently, realistic contents such as virtual reality(VR) and augmented reality (AR) are widely used for education to provide beneficial learning environments with thee-dimensional(3D) information and interactive technology. Specially, AR technology will be helpful to intuitively understand by adding virtual objects registered in the real learning environment with effective ways. In this paper, we developed an AR learning system using 3D spatial information in the 2D based textbook for studying math related to geometry. In order to increase spatial learning effect, we applied to solid shapes such as prisms and pyramids in mathematics education process. Also, it allows participants to use various shapes and expression methods (e.g., wireframe mode) with interaction. We conducted the experiment with our AR system, evaluated achievement and interest. Our experimental study showed positive results, our results are expected to provide effective learning methods in various classes through realistic visualization and interaction methods.

A comparative study of domestic and international research trends of mathematics education through topic modeling (토픽모델링을 활용한 국내외 수학교육 연구 동향 비교 연구)

  • Shin, Dongjo
    • The Mathematical Education
    • /
    • v.59 no.1
    • /
    • pp.63-80
    • /
    • 2020
  • This study analyzed 3,114 articles published in KCI journals and 1,636 articles published in SSCI journals from 2000 to 2019 in order to compare domestic and international research trends of mathematics education using a topic modeling method. Results indicated that there were 16 similar research topics in domestic and international mathematics education journals: algebra/algebraic thinking, fraction, function/representation, statistics, geometry, problem-solving, model/modeling, proof, achievement effect/difference, affective factor, preservice teacher, teaching practice, textbook/curriculum, task analysis, assessment, and theory. Also, there were 7 distinct research topics in domestic and international mathematics education journals. Topics such as affective/cognitive domain and research trends, mathematics concept, class activity, number/operation, creativity/STEAM, proportional reasoning, and college/technology were identified from the domestic journals, whereas discourse/interaction, professional development, identity/equity, child thinking, semiotics/embodied cognition, intervention effect, and design/technology were the topics identified from the international journals. The topic related to preservice teacher was the most frequently addressed topic in both domestic and international research. The topic related to in-service teachers' professional development was the second most popular topic in international research, whereas it was not identified in domestic research. Domestic research in mathematics education tended to pay attention to the topics concerned with the mathematical competency, but it focused more on problem-solving and creativity/STEAM than other mathematical competencies. Rather, international research highlighted the topic related to equity and social justice.

On a Representation of an Arbitrary Point on a Figure Focused on a Translated Figure (도형 위의 임의의 점의 표현에 대한 연구 -평행이동 된 도형을 중심으로-)

  • Lee, Min Jung
    • Communications of Mathematical Education
    • /
    • v.33 no.2
    • /
    • pp.105-122
    • /
    • 2019
  • In Korean textbooks, by T(x,y) = (x+a, y+b) where a and b are horizontal and vertical changes respectively, an arbitrary point on the original figure f(x, y) = 0 has been expressed as a point (x, y) and a point on a translated figure f(x-a, y-b) = 0 has been expressed as a point (x', y'). If an arbitrary point on a figure f(x, y) = 0 is expressed as a point (x, y), then a point (x, y) and a figure f(x, y) = 0 are different targets but the same characters are used. In this following study, there were found that the expressions in these textbooks were stuck for more than 50 years, so students' thoughts were stiff. And therefore these are a need to be improved so that those things are studied as follows. First, inducing a formula, what are the students' responses like when were expressed differently from textbooks? Second, based on the results reviewed, how will the expressions of the textbook be revised? Third, how do the students respond to the modified expressions? As the result, a point on the original figure were expressed differently from textbooks and a point on a translated figure was put as a point (x, y), and about it, all of the students surveyed said that this improved expressions made in the study were easier.

The Effects of Inductive Activities Using GeoGebra on the Proof Abilities and Attitudes of Mathematically Gifted Elementary Students (GeoGebra를 활용한 귀납활동이 초등수학영재의 증명능력 및 증명학습태도에 미치는 영향)

  • Kwon, Yoon Shin;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.123-145
    • /
    • 2013
  • This study was expected to yield the meaningful conclusions from the experimental group who took lessons based on inductive activities using GeoGebra at the beginning of proof learning and the comparison one who took traditional expository lessons based on deductive activities. The purpose of this study is to give some helpful suggestions for teaching proof to mathematically gifted elementary students. To attain the purpose, two research questions are established as follows. 1. Is there a significant difference in proof abilities between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? 2. Is there a significant difference in proof attitudes between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? To solve the above two research questions, they were divided into two groups, an experimental group of 10 students and a comparison group of 10 students, considering the results of gift and aptitude test, and the computer literacy among 20 elementary students that took lessons at some education institute for the gifted students located in K province after being selected in the mathematics. Special lesson based on the researcher's own lesson plan was treated to the experimental group while explanation-centered class based on the usual 8th grader's textbook was put into the comparison one. Four kinds of tests were used such as previous proof ability test, previous proof attitude test, subsequent proof ability test, and subsequent proof attitude test. One questionnaire survey was used only for experimental group. In the case of attitude toward proof test, the score of questions was calculated by 5-point Likert scale, and in the case of proof ability test was calculated by proper rating standard. The analysis of materials were performed with t-test using the SPSS V.18 statistical program. The following results have been drawn. First, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in proof ability than the comparison group who took traditional proof lessons. Second, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in the belief and attitude toward proof than the comparison group who took traditional proof lessons. Third, the survey about 'the effect of inductive activities using GeoGebra on the proof' shows that 100% of the students said that the activities were helpful for proof learning and that 60% of the reasons were 'because GeoGebra can help verify processes visually'. That means it gives positive effects on proof learning that students research constant character and make proposition by themselves justifying assumption and conclusion by changing figures through the function of estimation and drag in investigative software GeoGebra. In conclusion, this study may provide helpful suggestions in improving geometry education, through leading students to learn positive and active proof, connecting the learning processes such as induction based on activity using GeoGebra, simple deduction from induction(i.e. creating a proposition to distinguish between assumptions and conclusions), and formal deduction(i.e. proving).