• Title/Summary/Keyword: Geometrically

Search Result 852, Processing Time 0.028 seconds

A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Latticed Dome (단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구)

  • Lee, Jung-Hyun;Lee, Sang-Ju;Lee, Jin-Sub;Choi, Il-Sub;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.147-153
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition, and the connection type because it is originazed by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling of the structures is analyzed. But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base of the linear buckling load by the eigenvalue analysis.

  • PDF

Steering Axis Analysis of Multi-link Suspensions with Bushing Compliance (컴플라이언스 특성을 고려한 멀티링크 현가장치의 조향축 해석)

  • Kim, Sang Sup;Kim, Seong Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.194-202
    • /
    • 2014
  • Steering axis of suspensions is an important factor that affects ride and handling quality in the vehicle chassis development. Macpherson strut and double wishbone's steering axis are defined geometrically, but multi-link suspensions can not be geometrically analyzed. In this case instant axis theory is commonly used to find a steering axis. Since the steering axis is moving with varying caster and kingpin inclination angle, this method approximately corresponds with exact solution. In this paper, we propose a velocity analysis method to find a pure rotational axis of the wheel relative to suspension arms, that is exact solution of the steering axis. This paper extends the method to analyze the steering axis of multi-link suspensions with bushing compliance. The analysis results applied to double wishbone and multi-link suspensions demonstrate validity and accuracy of the proposed method.

Strength Analysis of Particle-Reinforced Composites with Length-Scale Effect based on Geometrically Necessary Dislocations (기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 복합재의 강도해석)

  • Suh, Y.S.;Joshi, Shailendra P.;Ramesh, K.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.322-325
    • /
    • 2009
  • An enhanced continuum model for the size dependent strengthening of particle reinforced composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in a metal matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The size of the punched zone presents an intrinsic length scale, and this results in the size dependence of the overall behavior of the composite. Results show that predicted 0.2% offset yield stresses are increasing with smaller inclusions and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle.

  • PDF

Geometrically Nonlinear Analysis of Suspension Bridges (현수교의 기하학적 비선형해석)

  • ;Bang, Myung-Suk
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.177-183
    • /
    • 1994
  • The purpose of this study is to develop the analytical method and to analyze the geometrically nonlinear behavior of suspension bridges. Two step algorithm is developed to analyze the initial profile under the deal load and the nonlinearity under the live load. Since the geometrically nonlinear effect is great comparing with the linear analysis, it should be considered in the analysis and design. The comparison between analysis and measurement shows that the new algorithm is effective.

  • PDF

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.581-595
    • /
    • 2010
  • This paper presents topology optimization of geometrically and materially nonlinear structures using a bi-directional evolutionary optimization (BESO) method. To maximum the stiffness of nonlinear structures under prescribed design load, the complementary work is selected as the objective function of the optimization. An optimal design can be obtained by gradually removing inefficient material and adding efficient ones. The proposed method can be applied to a series of geometrically and/or materially nonlinear structures. The results show considerable differences in topologies and stiffness of the optimal designs for linear and nonlinear structures. It is found that the optimal designs for nonlinear structures are much stiffer than those for linear structures when large design loads (which result in significantly nonlinear deformations) are applied.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.