• Title/Summary/Keyword: Geometrical error

Search Result 189, Processing Time 0.021 seconds

Sharp Edge Tool Alignment for Micro Pattern Machining (마이크로 패터닝 가공을 위한 공구 정렬에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents a geometrical error compensation of tool alignment for sharp edge bite on B axis controlled machine. In precision micro patterning, bite alignment is crucial parameter for machined surface. To decrease bite alignment error, plus tilted bite from B axis center is touched to reference work piece(pin gauge) and checked the deviation from original position. Same process is repeated for maximum touch deviation value. From this touched position value, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct sharp edge bite alignment.

  • PDF

Research on a Method for the Optical Measurement of the Rifling Angle of Artillery Based on Angle Error Correction

  • Zhang, Ye;Zheng, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.500-508
    • /
    • 2020
  • The rifling angle of artillery is an important parameter, and its determination plays a key role in the stability, hit rate, accuracy and service life of artillery. In this study, we propose an optical measurement method for the rifling angle based on angle error correction. The method is based on the principle of geometrical optics imaging, where the rifling on the inner wall of the artillery barrel is imaged on a CCD camera target surface by an optical system. When the measurement system moves in the barrel, the rifling image rotates accordingly. According to the relationship between the rotation angle of the rifling image and the travel distance of the measurement system, different types of rifling equations are established. Solving equations of the rifling angle are deduced according to the definition of the rifling angle. Furthermore, we added an angle error correction function to the method that is based on the theory of dynamic optics. This function can measure and correct the angle error caused by the posture change of the measurement system. Thus, the rifling angle measurement accuracy is effectively improved. Finally, we simulated and analyzed the influence of parameter changes of the measurement system on rifling angle measurement accuracy. The simulation results show that the rifling angle measurement method has high measurement accuracy, and the method can be applied to different types of rifling angle measurements. The method provides the theoretical basis for the development of a high-precision rifling measurement system in the future.

Estuary Riverbed Monitoring using GPS and Echo Sounder (GPS와 Echo Sounder를 이용한 하상 모니터링)

  • Hong Jung-Soo;Lee Yong-Hee;Lee Kee-Boo;Lee Dong-Rak
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.83-88
    • /
    • 2006
  • We intend to increase in efficiency of the topographic monitoring of seabed or riverbed by combined with DGPS, RTK GPS and echo sounder. For this study, we defined the error correction of the echo sounder with the experiment of water tank, which is considered the characteristic of estuary riverbed and then we developed the s/w for 3-dimensional monitoring of estuary riverbed and applied the s/w to field test and improved the various problems. On analyzing topography of estuary riverbed by combined GPS with echo sounder, the draught error which is yielded to change of length from the water surface by the movement of survey vessel to the end of the transducer was eliminated by geometrical rearrangement and we defined the correction formula, z = BM+ SAH- $DBR_{(i)}$ - DRT - ED. The sounding error about the echo sounder and characteristic of estuary riverbed was found by understanding the relation of average diameter and residual error and we defined correction formula, Y= -0.00474*In(X) -0.0045 by the regression analysis. and then we verified applicability of correction formula.

  • PDF

A Design of Navigation System Using Stratospheric Airships in South Korea

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Hur, Jung;Kang, Tae-Sam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.56-69
    • /
    • 2006
  • For a relatively small country like Korea, a radionavigation system using airships can be considered, which is to provide the navigation service utilizing the stratospheric airships that are deployed in the stratosphere at the altitude of around 20-23km, and which is an independent or a back-up radionavigation system other than current GPS or GLONASS. In this paper, a feasibility study on the constellation of stratospheric airships for the navigation system has been performed. A measure of a geometrical condition between a receiver and navigation transmitters. called the DOP (Dilution of Precision), determines the resulting positioning error of the navigation system, if the error of range measurement is predictable. Therefore, with assumption that the range measurement error of the stratospheric airship navigation system is quite similar to GPS. the several DOP values have been used to evaluate the performance of the navigation system with comparing with the DOP values of GPS as the reference values. To provide the position information of the navigation transmitters to users, a receiver cluster system fixed on the ground, called an IGPS (inverted GPS), is proposed, and the error is also evaluated using the DOP values. Five areas around five major cities in South Korea have been selected, and then by numerical simulations the DOP values are compared those of GPS to assess the performance of the proposed navigation system using stratospheric airships. The possible frequency bands have been proposed. and then link budget of the navigation transmitter has been analyzed for the proposed navigation system.

Eye Gaze Interface in Wearable System (웨어러블 시스템에서 눈동자의 움직임을 이용한 인터페이스)

  • 권기문;이정준;박강령;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2124-2127
    • /
    • 2003
  • This paper suggests user interface method with wearable computer by means of detecting gaze under HMD, head mounted display, environment. System is derived as follows; firstly, calibrate a camera in HMD, which determines geometrical relationship between monitor and captured image. Second, detect the center of pupil using ellipse fitting algorithm and represent a gazing position on the computer screen. If user blinks or stares at a certain position for a while, message is sent to wearable computer. Experimental results show ellipse fitting is robust against glint effects, and detecting error was 6.5%, and 4.25% in vertical and horizontal direction, respectively.

  • PDF

Effect of Tool Approaching Path on He Shape of Cylindrically Milled Parts (공구 접근 경로가 원통형상의 밀링가공물에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.45-51
    • /
    • 2003
  • Milling process has beer used in aircraft, auto-component and mold industries widely. They need more accurate and precise parts to improve the performance and quality of their products. So, the geometrical form accuracy of the workpiece surface generated by this process is getting more and more important. Generally, the form accuracy is affected by machine conditions, cutting conditions, tool geometry, tool deflection by cutting force and tool path md so on. Even though they are controlled as perfect conditions, it is easily found that there is a line along the axis of a cylindrically milled part. It is presumed that the tool approaching causes this error on milled surface. Thus, the study for investigating the effect of the tool approaching path on the cylindrical surface geometry of the end-milled part is carried out.

Beam Focusing Performance of Electrostatic Lens using SIMION Simulator (SIMION 시뮬레이터를 이용한 정전렌즈의 빔 집속 성능)

  • Oh, Maeng-Ho;Jeong, In-Sung;Lee, Jong-Hang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.128-133
    • /
    • 2009
  • Focused-ion-beam (FIB) system is capable of both machining and measuring in nano-scale; hence nano-scale focusing quality is important. This paper investigates design parameters of two electrostatic lenses in order to achieve the best ion beam focusing performance. Commercial SIMION simulator is used to optimize the dimensions of the condenser and objective lenses and investigate the influence of assembly error on focusing quality The simulation results show that the beam focusing quality is not influenced by angle deviation within ${\pm}0.02\;deg$ and geometrical eccentricity within ${\pm}50$ micrometers.

Geometrical Compensation of Injection-Molded Thin-Walled Parts in Reverse Engineering

  • Kim Yeun Sul;Lee Hi Koan;Huang Jing Chung;Kong Young Sik;Yang Gyun Eui
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 2005
  • A geometric compensation of thin-walled molded parts in reverse engineering is presented. Researches in reverse engineering have focused on the fitting of points to curves and surfaces. However, the reconstructed model is not the geometric model because the molded parts have some dimensional errors in measurements and deformation during molding. Geometric information can give an improved accuracy in reverse engineering. Thus, measurement data must be compensated with geometric information to reconstruct the mathematical model. The functional and geometric concepts of the part can be derived from geometric information. LSM (Least square method) is adopted to determine the geometric information. Also, an example of geometric compensation is given to improve the accuracy of geometric model and to inspect the reconstructed model.

Development of a field-applicable Neural Network classifier for the classification of surface defects of cold rolled steel strips (냉연강판의 표면결함 분류를 위한 현장 적용용 신경망 분류기 개발)

  • Moon C.I.;Choi S.H.;Joo W.J.;Kim G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.61-62
    • /
    • 2006
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.

  • PDF

Development of a Neural Network Classifier for the Classification of Surface Defects of Cold Rolled Strips (냉연강판의 표면결함 분류를 위한 신경망 분류기 개발)

  • Moon, Chang-In;Choi, Se-Ho;Kim, Gi-Bum;Kim, Cheol-Ho;Joo, Won-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.76-83
    • /
    • 2007
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.