• Title/Summary/Keyword: Geometrical error

Search Result 189, Processing Time 0.028 seconds

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

Effect of Tool Approaching Path on the Shape of Cylindrical Hole in a Milling Process (공구접근 경로가 밀링 가공된 원통 구멍 형상에 미치는 영향)

  • Kim, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.50-55
    • /
    • 2004
  • Because of the development in mold industries, the geometrical form accuracy of the milled surface is getting more and more important. It has been known that the geometrical form accuracy is affected by machine conditions, cutting conditions, tool conditions and tool path and so on. Among them, the tool approaching path causes the change in material removal per tooth at the end of each machining cycle. And, this change generates the geometrical form error around the region where the tool engages the workpiece initially. So, it is impossible to eliminate the geometrical error caused by the tool approaching path. Thus, characteristics of this geometrical error are studied analytically and experimentally to minimize this region.

  • PDF

Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling (엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정)

  • 류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

Error analysis related to a learner's geometrical concept image in mathematical problem solving (학생이 지닌 기하적 심상과 문제해결과정에서의 오류)

  • Do, Jong-Hoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.2
    • /
    • pp.195-208
    • /
    • 2006
  • Among different geometrical representations of a mathematical concept, learners are likely to form their geometrical concept image of the given concept based on a specific one. A learner's image is not always in accord with the definition of a concept. This can induce his or her errors in mathematical problem solving. We need to analyse types of such errors and the cause of the errors. In this study, we analyse learners' geometrical concept images for geometrical concepts and errors related to such images. Furthermore we propose a theoretical framework for error analysis related to a learner's concept image for a general mathematical concept in mathematical problem solving.

  • PDF

On the Definition of Geometrical Progression of the High school (등비수열의 정의에 대한 연구)

  • Lee, Min-Jung;Lee, Yang
    • The Mathematical Education
    • /
    • v.51 no.3
    • /
    • pp.211-221
    • /
    • 2012
  • We discovered that definition of a Geometrical Progression(Sequence) have some differences in domestic textbooks & some foreign countries' books. This will be able to cause a chaos when students divide whether a sequence is a Geometrical Progression(Sequence) or not, and a question error when teachers compose questions about convergence conditions of Infinite Geometric progressions & series. We took a question investigation for students about definition of a Geometrical Progression(that is called G. P.), we discovered that high level students have an error about definition of a G. P.. So We modified expressions of terminology in domestic textbooks appropriately through a Geometrical Progression(Sequence), infinite series, & infinite geometrical series in some foreign countries' books.

Tool Deflection and Geometrical Accuracy in Side Wall Milling (측벽 밀링에서 공구 변형 및 형상 정밀도)

  • 류시형;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

Study on the geometrical nonlinearity of the hinge mechanism used in a piezoactuator (압전구동기에 사용되는 힌지 메커니즘의 기구학적 비선형성에 관한 연구)

  • 김준형;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1638-1642
    • /
    • 2003
  • Piezoactuator using a flexure hinge mechanism is often used in the precision stages. When the total size of the hinge mechanism become small compared with the deformation of the hinge mechanism, the geometrical nonlinearity makes a considerable error in the output displacement. In this research, the incremental method based on the matrix method is developed to model the effect of the geometrical nonlinearity. Developed modeling method is applied to derive the error of output displacement of the bridge-type hinge mechanism and its results are derived with respect to the design parameters. This method can be easily used to the design optimization of the hinge mechanism and analysis results show that the geometrical nonlinearity error should be considered to achieve a high accuracy to the piezoactuators.

  • PDF

Dimensional Accuracies of Cold-Forged Spur Gears (냉간단조 스퍼어기어의 치수정밀도)

  • 이정환;이영선;박종진
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.115-121
    • /
    • 1996
  • Recently it is attempted to manufacture gears by various cold forging methods to meet requirements of mass production and uniform qualities. Compared to machined gears cold forged ears reveal higher tooth strength and better surface roughness but they reveal lower geometrical accuracies. Therefore in the present study a series of experiments are performed to investigate relations between geometrical accuracies of dies and billet and those of the final product. The geometrical accuracies of forged gears are considered through functional gear-element tolerances by measuring pitch error profile error lead error radial error tooth thickness and rolling test. Results of the experiments can be summarized as follows: (1) involute spur gears of KS 5(or AGMA7) accuracies can be made,(2) concentricity of die set should be maintained within 0.01mm (3) clearance between the billet and die set should be less than 0.1mm (4) con-centricity and radial runout should be less than 0.08mm and 0.1mm respectively. However it is thought that FEM analysis of elastic/thermal deformations of dies and the billet is necessary for a better understanding of the findings obtained through the present study.

  • PDF