• 제목/요약/키워드: Geometrical Structure

검색결과 660건 처리시간 0.025초

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

Effects of the geometrical parameters of the core on the mechanical behavior of sandwich honeycomb panel

  • Ahmed, Settet T.;Aguib, Salah;Toufik, Djedid;Noureddine, Chikh;Ahmed, Chellil
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.473-488
    • /
    • 2019
  • The present work is the study of mechanical behavior due to variation of the geometrical parameters in the core of the sandwich honeycomb panel. This study has allowed us to increase or decrease the strains and stresses of the panel, in changing the angle of alveolus, as explained and described below. In taking into consideration the results obtained previously to improve the mechanical properties and increase the adhesion of different parts of the panel, without changing the adhesive, we have conceived two new models, in increasing the contact surfaces in boundary of each part of the panel and giving a conical hexagonal shape in his corp.

저온 소성 유전체 세라믹 시스템에서의 전송 선로 특성 해석 (Analysis of characteristics of TRL(Transmission line) in LTCC (low temperature cofired ceramic) system)

  • 유찬세;이우성;강남기;박종철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.23-26
    • /
    • 2002
  • In ceramic systems using LTCC, many components including embedded passives and TRL's are used for composition of 3-dimensional circuit. So the exact analysis on this components must be performed. As for the TRL's, material properties including electrical conductivity of metal, loss factor and effective dielectric constant of dielectric material and geometrical factors like roughness of surface, vias, dimension of TRL structure have a large effect on the characteristics of transmission lines. Such properties of materials have different values in each system with ideal ones presented in text book. In this research, the effective material properties in each system are examined and the effect of material properties and geometrical factors on the characteristics of TRL's are analyzed and quantified by simulation and measurement.

  • PDF

Numerical analysis of second-order effects of externally prestressed concrete beams

  • Lou, Tiejiong;Xiang, Yiqiang
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.631-643
    • /
    • 2010
  • A numerical procedure for the geometrical and material nonlinear analysis of concrete beams prestressed with external tendons is described, where the effects of external prestressing are treated as the equivalent loads applied on the concrete beams. The geometrical nonlinearity is considered not only the eccentricity variations of external tendons (second-order effects) but also the large displacement effects of the structure. The numerical method can predict the nonlinear response of externally prestressed concrete beams throughout the entire loading history with considerable accuracy. An evaluation of second-order effects of externally prestressed concrete beams is carried out using the proposed analysis. The analysis shows that the second-order effects have significant influence on the response characteristics of externally prestressed concrete beams. They lead to inferior ultimate load and strength capacities and a lower ultimate stress increase in tendons. Based on the current analysis, it is recommended that, for simply-supported externally prestressed beams with straight horizontal tendons, one deviator at midspan instead of two deviators at one-third span be furnished to minimize these effects.

Structural analysis of circular UHPCC form for hybrid pier under construction loads

  • Wu, X.G.;Zhao, X.Y.;Han, S.M.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.167-181
    • /
    • 2012
  • Ultra high performance cementitious composite material is applied to the design of multifunctional permanent form for bridge pier in this paper. The basic properties and calculating constitutive model of ultra high performance cementitious composite are introduced briefly. According to momental theory of thin-walled shell, the analytical solutions of structural behavior parameters including circumferential stress, longitudinal stress and shear stress are derived for UHPCC thin-walled circular tube. Based on relevant code of construction loads (MHURD of PPC 2008), the calculating parameter expression of construction loads for UHPCC thin-walled circular tube is presented. With geometrical dimensions of typical pier, the structural behavior parameters of UHPCC tube under construction loads are calculated. The effects of geometrical parameters of UHPCC tube on structural behavior are analyzed and the design advices for UHPCC tube are proposed. This paper shall provide a scientific reference for UHPCC permanent form design and UHPCC hybrid structure application.

Open-Ball Scheme을 이용한 2D 패턴의 상대적 닮음 정도 측정의 Moment Invariant Method와의 비교 (Similarity Measurement Using Open-Ball Scheme for 2D Patterns in Comparison with Moment Invariant Method)

  • 김성수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.76-81
    • /
    • 1999
  • The degree of relative similarity between 2D patterns is obtained using Open-Ball Scheme. Open-Ball Scheme employs a method of transforming the geometrical information on 3D objects or 2D patterns into the features to measure the relative similarity for object(patten) recognition, with invariance on scale, rotation, and translation. The feature of an object is used to obtain the relative similarity and mapped into [0, 1] the interval of real line. For decades, Moment-Invariant Method has been used as one of the excellent methods for pattern classification and object recognition. Open-Ball Scheme uses the geometrical structure of patterns while Moment Invariant Method uses the statistical characteristics. Open-Ball Scheme is compared to Moment Invariant Method with respect to the way that it interprets two-dimensional patten classification, especially the paradigms are compared by the degree of closeness to human's intuitive understanding. Finally the effectiveness of the proposed Open-Ball Scheme is illustrated through simulations.

  • PDF

Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti Ranjan;Panda, Subrata Kumar
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.55-67
    • /
    • 2019
  • The finite solutions of deflection and the corresponding in-plane stress values of the graded sandwich shallow shell structure are computed in this research article via a higher-order polynomial shear deformation kinematics. The shell structural equilibrium equation is derived using the variational principle in association with a nine noded isoprametric element (nine degrees of freedom per node). The deflection values are computed via an own customized MATLAB code including the current formulation. The stability of the current finite element solutions including their accuracies have been demonstrated by solving different kind of numerical examples. Additionally, a few numerical experimentations have been conducted to show the influence of different design input parameters (geometrical and material) on the flexural strength of the graded sandwich shell panel including the geometrical configurations.

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • 제13권2호
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.