• 제목/요약/키워드: Geometrical Properties

검색결과 562건 처리시간 0.033초

세브론노치 세라믹시편을 이용한 동적파괴인성측정 (Measurement of Dynamic Fracture Toughness Using Chevron Notched Ceramic Specimen)

  • 이연수;이영선;박래석;문영득;윤회석
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2001
  • A dynamic fracture toughness test method with a chevron notched ceramic specimens is proposed. The notch angles of the chevron specimens were 90, 100$^{\circ}$and 110$^{\circ}$. Finite element analysis(FEA) were done to determine the geometrical properties of chevron-notch specimens according to notch angles. The static fracture toughness of the chevron notched alumina specimen was 3.8MP$\alpha$√m similar to that of the general fracture specimen with a precrack. Dynamic fracture toughness was 4.5 MP$\alpha$√m slightly higher than the static one. These research showed the possibility of the split Hopkinson pressure bar test method using the newly proposed chevron notched specimens to get the dynamic fracture toughness of extremely brittle materials such as ceramics.

  • PDF

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu;Lee, Jaehong;Lee, Do Hyung;Lee, Kihak
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.1-14
    • /
    • 2020
  • This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods

  • Yuan, Yuan;Zhao, Ke;Zhao, Yafei;Kiani, Keivan
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.551-569
    • /
    • 2020
  • Vibration of vertically aligned-monolayered-nonuniform nanorods consist of functionally graded materials with elastic supports has not been investigated yet. To fill this gap, the problem is examined using the elasticity theories of Eringen and Gurtin-Murdoch. The geometrical and mechanical properties of the surface layer and the bulk are allowed to vary arbitrarily across the length. The nonlocal-surface energy-based governing equations are established using differential-type and integro-type formulations, and solved by employing the Galerkin method by exploiting admissible modes approach and element-free Galerkin (EFG). Through various comparison studies, the effectiveness of the EFG in capturing both nonlocal-differential/integro-based frequencies is proved. A constructive parametric study is also conducted, and the roles of nanorods' diameter, length, stiffness of both inter-rod's elastic layer and elastic supports, power-law index of both constituent materials and geometry, nonlocal and surface effects on the dominant frequencies are revealed.

Study on the Geometrical Properties of Brown Rice on Shape Factors

  • Ning, Xiao Feng;Kang, Tae-Hwan;Kim, Oui-Woung;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.90-99
    • /
    • 2012
  • Purpose: This study was conducted to investigate the optimal sorting factors in establishing an efficient sorting technology for brown rice. Methods: The brown rice varieties used in this study were Il Pum, Chu Cheong, Dong Jin, Un Gwang, Nam Pyeong, and Dae An. These were classified into whole grain, unriped grain, and green dead rice. The shape factors were analyzed based on length, width and thickness of the grains. Results: The results revealed that the maximum length among whole grain, unriped grain, and green dead rice was observed in Dae An variety while Chu Cheong variety showed the minimum. Further more, Il Pum brown rice showed the maximum width while Dong Jin variety showed the minimum. In the case of thickness, the maximum was observed in Un Gwang variety and that of the minimum among Nam Pyeong variety for both whole grain and unriped grain. Conclusions: The length and width can be used as determinants in sorting factors of whole grain and green dead rice, and the thickness can be considered as optimum sorting factor of whole grain and unriped grain.

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • 제7권2호
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

Investigation of bar parameters occurred by cross-shore sediment transport

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.277-286
    • /
    • 2013
  • Cross-shore sediment transport is very important factor in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial base slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical of sediment transport rate and considerable characteristics of beach profiles under storm conditions and bar parameters affecting on-off shore sediment transport are investigated for the beach materials with the medium diameter of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. Non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.

Chromium(III) Complex Obtained from Dipicolinic Acid: Synthesis, Characterization, X-Ray Crystal Structure and Electrochemical Studies

  • Ghasemi, Khaled;Rezvani, Ali Reza;Razak, Ibrahim Abdul;Moghimi, Abolghasem;Ghasemi, Fatemeh;Rosli, Mohd Mustaqim
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3093-3097
    • /
    • 2013
  • The synthesis, X-ray crystallography, spectroscopic (IR, UV-vis), and electrochemical properties of the title compound, $[H_3O][Cr(dipic)_2][H_3O^+.Cl^-]$ (1), ($H_2dipic$ = 2,6-pyridinedicarboxylic acid), are reported. This complex crystallizes in the monoclinic space group Cc with a = 14.9006(10) ${\AA}$, b = 12.2114(8) ${\AA}$, c = 8.6337(6) ${\AA}$, ${\alpha}=90.00^{\circ}$, ${\beta}=92.7460(10)^{\circ}$, ${\gamma}=90.00^{\circ}$, and V = 1569.16(18) ${\AA}^3$ with Z = 4. The hydrogen bonding and noncovalent interactions play roles in the stabilization of the structure. In order to gain a better understanding of the most important geometrical parameters in the structure of the complex, atoms in molecules (AIM) method at B3LYP/6-31G level of theory has been employed.

다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰 (Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts)

  • 강민아;김영경;김준민;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

프리스트레스트 콘크리트 휨 부재의 민감도 해석 (Sensitivity Analysis for Flexural Behaviors of PSC Members)

  • 이존자;이봉구;김민주;이용학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.183-194
    • /
    • 2002
  • A general procedure to evaluate the sensitivity of design variables to stresses and strains in PSC flexural members is proposed. To accomplish the purpose of this study, long-term losses including creep, shrinkage, and PS steel relaxation are formulated based on the equilibrium states of the deformed sectional geometry. Thereby, the formulation follows the basic steps which consider the fundamental formulas adopted by CEB-FIP, ACI, and KCI rather than the age adjusted effective modulus concept. Twenty-one design variable including the material and geometrical properties of concrete, nonprestressing steel and prestressing steel, and the geometry of the cross section are considered in the sensitivity analysis. The gradients of the stresses and strains needed for the sensitivity assessment are calculated in a closed format. The derived formulation is applied to the T-type section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated to ensure the validity of the proposed procedure.