• Title/Summary/Keyword: Geometrical Optics

Search Result 85, Processing Time 0.027 seconds

Analysis of Axially Displaced Ellipse Gregorian Dual Reflector Antennas (축이동 그레고리안 이중 반사경 안테나의 해석)

  • 임성빈;최경국;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1161-1169
    • /
    • 2003
  • In this paper, ADE(Axially Displaced Ellipse) Gregorian dual reflector antennas, which are the special form of Gregorian dual reflector antennas, were analyzed. In the procedure of antenna analysis, the aperture field distribution was obtained by using the geometrical optics and their far-field radiation characteristics were analyzed by using the aperture field method. The analysis results such as antenna efficiency, HPBW(Half Power Beam Width), FNBW(First Null Beam Width), and FSL(First Sidelobe Level) were presented as functions of edge taper and size of main reflector and subreflector. From the results in this paper, we could confirm that ADE reflector antennas have the different radiation characteristics from the classical dual reflector antennas.

An Interference Analysis Method with Site-Specific Path Loss Model for Wireless Personal Area Network

  • Moon, Hyun-Wook;Kwon, Se-Woong;Lee, Jong-Hyun;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.290-295
    • /
    • 2010
  • In this paper, an interference analysis method with a site-specific path loss model for a wireless personal area network (WPAN) is proposed. The site-specific path loss model is based on geometrical optics and geometric probability to consider both site-specific radio propagation characteristics and a closed-form expression to obtain the mean interference from which the uniformly distributed multiple interferers are derived. Therefore, the proposed interference analysis method can achieve more computational simplicity than the Monte-Carlo (MC) simulation, which uses the ray-tracing (RT) technique. In addition, better accuracy than the conventional interference analysis model that uses stochastic method can also be achieved. To evaluate the proposed method, a signal to the interference-noise ratio with a mean interference concept for uniformly distributed interferers is calculated and compared in two simulation scenarios. As a result, the proposed method produces not only better matched results with the MC simulation using the RT technique than the conventional interference analysis model, but also simpler and faster calculation, which is due to the site-specific path loss model and closed-form expression for interference calculation.

Optical Analysis for the Autostereoscopic Display with a Lenticular Array Using Finite Ray Tracing (유한광선추적을 이용한 렌티큘러 렌즈 기반 3차원 디스플레이 장치의 해석)

  • Kim, Bong-Sik;Kim, Keon-Woo;Choi, Da-Shin;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2014
  • We propose an analysis method of an autostereoscopic display system with lenticular lens array using finite ray-tracing method that is verified by the geometrical optics. In the present work, we adopt the cylinder equation for the mathematical expression of the lenticular lens. For the calculation of the direction cosine of the transmitted ray, we first calculate the refracting point at bottom of the lens and the direction cosine of the incident ray that propagating through the lens by the Snell's law, and then apply to finite ray-tracing method. Finally, we obtain the simulation results for the intensity distribution of the ray at optimal viewing distance. From these results, we confirm the realization of 3D image that exists separately according to the viewing position at an optimal viewing distance.

Twin-Image Elimination in In-line Digital Holography Microscope (In-line 디지털 홀로그래피 현미경에서 쌍둥이 상 제거연구)

  • Cho, Hyung-Jun;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.117-121
    • /
    • 2007
  • A fundamental problem in the in-line digital holography microscope is that the real image and virtual image and zero-order image are not separated spatially. In this paper, we have eliminated the zero-order noise by an averaging method and the twin image is divided using a geometrical set-up in an in-line digital holographic microscope. The size of the virtual image depends on the distance between the objective lens and the hologram plane and on the distance between the hologram plane and the image plane. We found that the virtual image size is smallest when the distance between the objective lens and the hologram plane is equal to the back focal length of the objective lens. We could divide the virtual image and real image by controlling the distance between the hologram plane and the objective lens.

Color Adjustment Study by Micro-Pattern Embedding in Optical Multilayer Thin Film (다층광학필름에서 마이크로패턴 삽입을 통한 색 조정 연구)

  • Kim, Min;Woo, Ju Yeon;Yoon, Junho;Hwangbo, Chang Kwon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • It is well known that Morpho butterflies show distinctive, brilliant and iridescent colors and have micro-nano scale structures, instead of dyes and pigments, on their wings. This structural coloration is regarded as a novel technique to express color with a long lifetime, ease and precise tenability. Here, we studied optical multilayer thin films with thickness of several tens of nm ($TiO_2$ and $SiO_2$) and lens-shape micro-patterns. Fabrication and characterization of the multilayer stacking structure and the micro-pattern structure were performed and the films were analyzed via several optical measuring techniques. Finally, we discussed how the micro-pattern structure could enhance independence with color changes according to the viewing angle.

Calculation of Longitudinal Aberrations in Decentered Optical System with Non-symmetrical Elements (비대칭 오차요인이 있는 편심 광학계에서의 종수차 계산)

  • Ryu, Jae-Myung;Jo, Jae-Heung;Kang, Geon-Mo;Lee, Hae-Jin;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.151-160
    • /
    • 2010
  • When the optical image stabilization is implemented by moving one of the lens groups in a zoom system, decentration should be considered in the optical design process. Although it is partially possible to calibrate optical performances in an optical system with non-symmetrical elements by using a lot of commercial software, the results of calibrating longitudinal aberrations have some calibration errors because of the lack of precise consideration of decentered optical systems. In particular, the amount of distortion in paraxial ray tracing is different from the experimental value because paraxial ray tracing in the optical system is not useful. In this paper, in order to solve this problem being from various commercial lens design software, the set of equations of paraxial ray tracing in a zoom lens system with the non-symmetrical elements like decentration or tilt are theoretically induced. Then, the methods to calibrate the equations of longitudinal aberrations by using these equations in a non-symmetrical optical system are presented. The method of calibrating longitudinal aberrations can in practice be used to correct hand shaking effects in a zoom lens system.

A Calculation of the Propagation for Focused Beams Using BPM (BPM을 이용한 안테나 배열의 집속 빔 전파 해석)

  • Kim Jaeheung;Cho Choon Sik;Lee Jae W.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.465-471
    • /
    • 2005
  • A method of calculation fur propagating and focusing of focused beams generated in antenna arrays, using BPM(Beam Propagation Method), is presented in this paper. Based on the diffraction theory, the beam focusing and Propagation is studied specially for the case of the antenna way fed by the Rotman lens that is able to focus microwave power on its focal arc or generate multiple beams. There are difficulties in performing a full-wave simulation using a commercial EM simulation tool for propagating and focusing of beams because of the structural complexity and the feeding assignment of the antenna array. Therefore, as an alternative solution, the BPM is presented to calculate the beam propagation from the aperture-type antennas. From the point of view of optics, the propagations of the lens have been simplified from the Fresnel diffraction integral to the Fourier transform. Using Fourier Transform, a beam propagation method is developed to show improvement of the resolution by controlling the wavefront of wave Propagating from an aperture-type antenna array. The beam width(or spot size) and the intensity are calculated for a focused beam propagating from an array having $10\lambda$ of its size. For the beams with $20\lambda,\;30\lambda$, and $50\lambda$ of geometrical focal length, the half-power beam widths(or spot size) are about 1.1\lambda,\;1.3\lambda,\;and\;1.9\lambda$ respectively.

Application of Ultrasound Tomography for Non-Destructive Testing of Concrete Structure (초음파 tomography를 응용한 콘크리트 구조물의 비파괴 시험에 관한 연구)

  • Kim, Young-Ki;Yoon, Young-Deuk;Yoon, Chong-Yul;Kim, Jung-Soo;Kim, Woon-Kyung;Song, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • As a potential approach for non-destructive testing of concrete structures, we evaluate the time-of-flight (TOF) ultrasound tomography technique In conventional X ray tomography, the reconstructed Image corresponds to the internal attenuation coefficient However, in TOF ultrasound tomography, the reconstructed Image is proportional to the retractive index of the medium Because refractive effects are minimal for X-rays, conventional reconstruction techniques are applied to reconstruct the Image in X-ray tomography However, since ultrasound travels in curved path, due to the spatial variations in the refractive index of the medium, the path must be known to correctly reconstruct the Image. Algorithm for determining the ultrasound path is developed from a Geometrical Optics point view and the image reconstruction algorithm, since the paths are curved It requires the algebraic approach, namely the ART or the SIRT Here, the difference between the computed and the measured TOP data is used as a basis, for the iteration process First the initial image is reconstructed assuming straight paths. It then updates the path based on the recently reconstructed image This process of reconstruction and path determination repeats until convergence The proposed algorithm is evaluated by computer simulations, and in addition is applied to a real concrete structure.

  • PDF

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

A study on improving the surface structure of solar cell and increasing the light absorbing efficiency - Applying the structure of leaves' surface - (태양전지 텍스처 표면구조 개선 및 빛 흡수효율 향상에 관한 연구 - 식물 잎의 표면구조 적용 -)

  • Kim, Taemin;Hong, Joopyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • Biomimetc is a new domain of learning that proposes a solution getting clues from nature. There seems to be a sign of this phenomenon in fields of Renewable Energy. Foe example, Wind power was imitate the whale's fin that was improve efficiency of generating energy. This study focused on the photovoltaic generation as the instance of applying biomimetic. Efficiency is the most important factor in field of Photovoltaic generation. When given solar cell taking the sun light, most important fields of the study are absorb more light and increase the quantity of generation. For improving efficiency, the solar cell were builded up textures of taking a pyramid form, such a surface structure taking a role for remaining the light. This effects do the role as increasing absorbing efficiency. Such phenomenon calls Light Trapping, locking up the light on the surface of solar cell for a long time. Light is a vital factor to plants in the nature. Plants grow up through the photosynthesis that absorbing light for growth and propagation. So, plants make a effort how can absorb more the light in poor surroundings. This study set up a goal that imitates the minute surface structure of plants and applies to the existing solar cells's surface structure, so it can improve the efficiency of absorbing light. We used Light Tools software analyzing geometrical optics to analyze efficiency about new designed textures on the computer. We made a comparison between existing textures and new designed textures. Consequently, new designed textures were advanced efficiency, absorbing rates of light increasing about 7 percent. In comparison with existing and new textures, advancing about 20 percent in the efficient aspect.

  • PDF