• 제목/요약/키워드: Geometrical Nonlinear

검색결과 315건 처리시간 0.021초

Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique

  • Boukhatem, B.;Kenai, S.;Hamou, A.T.;Ziou, Dj.;Ghrici, M.
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.557-573
    • /
    • 2012
  • This paper discusses the combined application of two different techniques, Neural Networks (NN) and Principal Component Analysis (PCA), for improved prediction of concrete properties. The combination of these approaches allowed the development of six neural networks models for predicting slump and compressive strength of concrete with mineral additives such as blast furnace slag, fly ash and silica fume. The Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian regularization was used in all these models. They are produced to implement the complex nonlinear relationship between the inputs and the output of the network. They are also established through the incorporation of a huge experimental database on concrete organized in the form Mix-Property. Thus, the data comprising the concrete mixtures are much correlated to each others. The PCA is proposed for the compression and the elimination of the correlation between these data. After applying the PCA, the uncorrelated data were used to train the six models. The predictive results of these models were compared with the actual experimental trials. The results showed that the elimination of the correlation between the input parameters using PCA improved the predictive generalisation performance models with smaller architectures and dimensionality reduction. This study showed also that using the developed models for numerical investigations on the parameters affecting the properties of concrete is promising.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.

한국 현대건축의 공간.형태에서 나타난 탈정형적 표현에 관한 연구 (A Study on Ex-Formal Expression Observed in Space.Form of Korean Modern Architecture)

  • 장훈익
    • 한국디지털건축인테리어학회논문집
    • /
    • 제9권3호
    • /
    • pp.85-93
    • /
    • 2009
  • In this study, the ex-formal expressions observed in space form of Korean modern architecture are distributed for characteristic analysis based on the period and type. The result of the study is certified by the work analysis and the result is as follows. Initially, due to the limited materials and influence of western brutalism, the works developed during 1960~70 tend to be plastic and contain expressionism. Around 1980's, the works tend to show forms of amusement and popularity. In 1990's the works show significance in deconstructive expression. From after 2000, ecological concept of architecture was introduced and organic expression started increasing Secondly, the ex-formal expressions are found to be in four different types. The organic expression is shown regardless of the period. In modern days, not only the physical properties of materials, but also the ecological concept is combined with the organic expression and is in increase. The plural expression started appearing after the 1980's and the sculptural diversity is enhancing with the addition of decorative factors or modification of geometrical form. The ex-construction and deconstructive expression show significance in some characteristics such as folding, inclination, and geometrical explosion. The free form and nonlinear expression tend to increase dramatically based on the development of structure technology as well as execution and introduce of the digital design technique.

  • PDF

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

비선형 스케일링 함수를 이용한 어안 영상의 원근 변환 (Conversion of Fisheye Image to Perspective Image Using Nonlinear Scaling Function)

  • 김태우;조태경
    • 한국산학기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.117-121
    • /
    • 2009
  • 어안 렌즈 카메라로 촬영한 어안 영상은 일반 카메라 영상보다 화각이 크다. 반면 영상에서 피사체의 왜곡이 커서 사용자의 인지가 어려우므로 원근 영상으로 변환이 필요하다. 기존의 Ishii 방법[1]은 등거리 투영을 사용하므로 피사체가 변환 영상에서 크기와 기하학적 왜곡이 생기는 문제점을 가지고 있었다. 본 논문에서는 스케일링 함수를 이용한 어안 영상의 원근 영상 변환 방법을 제안하였다. 실험에서, 제안한 방법은 스케일링 함수를 적용함으로써 크기 왜곡과 기하학적 왜곡이 감소되었다.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains

  • Chen, Yong-Liang;Cen, Song;Yao, Zhen-Han;Long, Yu-Qiu;Long, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.83-114
    • /
    • 2003
  • A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane element with rigid rotational freedoms, is employed as the membrane component of the new shell element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted for avoiding membrane locking and hourglass phenomenon. The bending component of the new element comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent element models and the models in the commercial finite element software ABAQUS, are presented. They show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

Poincare Section과 신경망 기법을 이용한 수문자료 분석 (Analysis of Hydrologic data using Poincare Section and Neural Network)

  • 나창진;김형수;김중훈;김응석
    • 한국수자원학회논문집
    • /
    • 제35권6호
    • /
    • pp.817-826
    • /
    • 2002
  • 많은 학자들은 자료의 특성을 분석함으로써 장래를 예측하고자 끊임없이 노력하여 왔으며, 이는 아마도 확정론적 방법과 추계학적 방법으로 크게 대별할 수 있을 것이다. 그러나 예측을 하기 전에 먼저 자료의 특성을 파악하는 것은 모형 구축과 예측을 실행하는데 있어서 매우 중요하다 할 수 있다. 이러한 견지에서 최근 확정론적 방법으로 알려진 비선형 동역학적인 방법이 여러 분야에서 관심의 대상이 되고 있다. 본 연구에서는 비선형 동역학 시스템을 해석하기 위하여 Poincare에 의해 제안된 기하학적 방법을 이용하여 기존에 알려진 자료들과 실제 수문자료에 대한 특성을 비교 분석하였으며 자료의 특성에 따른 예측가능성을 판정하였다. 즉, Poincare section을 통해 Poincare map을 구축함으로써 자료의 특성을 파악하여 자료의 선형, 비선형성 뿐만 아니라 자료가 어떤 모형에 적합한지를 판단할 수 있었다.

얕은 정현형 아치의 불안정 거동에 관한 연구(2) : 스텝하중에서의 동적좌굴 특성 (The Instability Behavior of Shallow Sinusoidal Arches(2) : Classification of Dynamic Buckling under Step Pressure)

  • 김승덕;박지윤;권택진
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.417-426
    • /
    • 1999
  • 쉘형 구조물의 동적 불안정 문제를 다룬 연구결과는 다소 발표되고 있으나, 위상면을 이용하여 카오스 생성에 관해 기본적 현상을 다룬 연구는 아직 없는 실정이다. 동적 비선형 문제에서, 여러 가지 초기조건에 의해 불안정 현상이 민감하게 발생하는 이유를 파악하기 위해 위상면에서의 끌개의 특성을 조사하여 동적 불안정 생성과정을 검토하는 일은 매우 중요하다. 본 연구에서는 기하학적 비선형을 고려한 얕은 아치의 직접/간접 좌굴을 수치적 기법으로 조사하고, 이를 정적 좌굴하중과 비교한다.

  • PDF