• Title/Summary/Keyword: Geometrical Design

Search Result 912, Processing Time 0.029 seconds

A new analytical approach for optimization design of adhesively bonded single-lap joint

  • Elhannani, M.;Madani, K.;Mokhtari, M.;Touzain, S.;Feaugas, X.;Cohendoz, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.313-326
    • /
    • 2016
  • In this study the three-dimensional nonlinear finite element method was used to analyze the stresses distribution in the adhesive layer used to joint two Aluminum 2024-T3 adherends. We consider in this study the effect of different parameters witch directly affect the values of different stresses. The experimental design method is used to investigate the effects of geometrical parameters of the single lap joint in order to achieve an optimization of the assembly with simple lap joint. As a result, it can be said that both the geometrical modifications of the adhesive and adherends edge have presented a significant effect at the overlap edge thereby causing a decrease in peel and shear stresses. In addition, an analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the geometrical parameters. This approach can help the designers to improve the quality and the durability of the structural adhesive joints.

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Experimental study of spreading phenomena on hydrophilic micro-textured surfaces depending on surface geometrical features (친수성 마이크로 기둥 구조 표면에서의 표면 지형적 특성에 따른 퍼짐성 현상에 대한 실험적 연구)

  • Jang, Munyoung;Park, Sehyeon;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.35-39
    • /
    • 2018
  • In multiphase systems, surface wettability is one of dominant design parameters to enhance system performance. Since surface wettability can be maximized and minimized with micro-textured surfaces, therefore micro-textured surfaces are widely countered in various research and engineering fields. In this study, for better understanding of micrometer scaled surface wettability, spreading phenomena is experimentally investigated on the hydrophilic micro-textured surfaces. By photolithography and conventional dry etching method, there are prepared the surfaces with uniformly arrayed micro-pillars. The interfacial motions of a water droplet on the test sections are visualized by high speed camera in top view. On the basis of visualization data, it is analyzed the relation between dynamic coefficient and geometrical features on micro-textured surfaces.

Prediction on load carrying capacities of multi-storey door-type modular steel scaffolds

  • Yu, W.K.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.471-487
    • /
    • 2004
  • Modular steel scaffolds are commonly used as supporting scaffolds in building construction, and traditionally, the load carrying capacities of these scaffolds are obtained from limited full-scale tests with little rational design. Structural failure of these scaffolds occurs from time to time due to inadequate design, poor installation and over-loads on sites. In general, multi-storey modular steel scaffolds are very slender structures which exhibit significant non-linear behaviour. Hence, secondary moments due to both $P-{\delta}$ and $P-{\Delta}$ effects should be properly accounted for in the non-linear analyses. Moreover, while the structural behaviour of these scaffolds is known to be very sensitive to the types and the magnitudes of restraints provided from attached members and supports, yet it is always difficult to quantify these restraints in either test or practical conditions. The problem is further complicated due to the presence of initial geometrical imperfections in the scaffolds, including both member out-of-straightness and storey out-of-plumbness, and hence, initial geometrical imperfections should be carefully incorporated. This paper presents an extensive numerical study on three different approaches in analyzing and designing multi-storey modular steel scaffolds, namely, a) Eigenmode Imperfection Approach, b) Notional Load Approach, and c) Critical Load Approach. It should be noted that the three approaches adopt different ways to allow for the non-linear behaviour of the scaffolds in the presence of initial geometrical imperfections. Moreover, their suitability and accuracy in predicting the structural behaviour of modular steel scaffolds are discussed and compared thoroughly. The study aims to develop a simplified and yet reliable design approach for safe prediction on the load carrying capacities of multi-storey modular steel scaffolds, so that engineers can ensure safe and effective use of these scaffolds in building construction.

A Study on the Geometrical Space Composition, Dynamic Visual Perception and Questions of Existence found in the Works of James Turrell - Focusing on 'Wedgework', 'Space Division', 'Skyspace' Projects - (제임스 터렐의 작품에 나타난 기하학적 공간구성, 시지각적 역동성 그리고 존재론적 의미에 관한 연구 - '웨지워크', '스페이스 디비전', '스카이스페이스' 프로젝트를 중심으로 -)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.145-152
    • /
    • 2012
  • Since 1966 when James Turrell completed his studies on Art, he has been working on the consistent theme of Art. For the 46 years of time, site contexts, scales, methods of light have been changed and they made Turrell's unique 'project series'. Each series has different spatial, visual-perceptual forms and characteristics from other series. The differences were caused by the given situations, but also Turrell intentionally pursued it. However, there are essential theme of art that has not changed in most of Turrell's projects. Target of this paper is to study the unchanged theme as well as the differences. The study starts with three questions: first, what is the geometrical space composition?, second, what is the visual-perceptual phenomenon?, third, what is the hidden consistent theme? This research focuses on three case projects: Wedgework, Space Division Constructions, Skyspaces. These project series are in between the early small object-like installations and the late mega-scale outdoor projects. The study found that geometrical space composition has important role to give visual-perceptual dynamism to the viewer. The phenomenological perception is connected to the questions of relationship between human and space, ultimately human and the world. Although the Merleau-Ponty's philosophy has been related to the work of Turrell in various previous studies, Cartesian 3-dimensional geometry has also crucial role to experiment a viewer's perceptual boundaries. Image of infinity is another aspect of three cases, especially Space Division Constructions and Skyspaces. Through these structure, Turrell's work lead to an ultimate question of meaning for human existence in infinite space. It is hoped that this paper is helpful for Architecture and Interior design field in which light and space are essential.

  • PDF

A Design Method of Gear Trains Using a Genetic Algorithm

  • Chong, Tae-Hyong;Lee, Joung sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.62-70
    • /
    • 2000
  • The design of gear train is a kind of mixed problems which have to determine various types of design variables; i,e., continuous, discrete, and integer variables. Therefore, the most common practice of optimum design using the derivative of objective function has difficulty in solving those kinds of problems and the optimum solution also depends on initial guess because there are many sophisticated constrains. In this study, the Genetic Algorithm is introduced for the optimum design of gear trains to solve such problems and we propose a genetic algorithm based gear design system. This system is applied for the geometrical volume(size) minimization problem of the two-stage gear train and the simple planetary gear train to show that genetic algorithm is better than the conventional algorithm solving the problems that have continuous, discrete, and integer variables. In this system, each design factor such as strength, durability, interference, contact ratio, etc. is considered on the basis of AGMA standards to satisfy the required design specification and the performance with minimizing the geometrical volume(size) of gear trains

  • PDF

A Study on the Design Procedure of the Eight Pole Magnetic Bearings for the Inner-rotor and the Outer-rotor Type

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byung-Song;Lee, Su-Gil;Kim, Jae-Hee;Jung, Shin-Myung;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1424-1430
    • /
    • 2013
  • This paper presents design procedure of the magnetic bearings used for high-speed electric machines and flywheel energy storage systems. Magnetic bearing can be categorized by inner-rotor type and outer-rotor type according to the position of the rotary disc. These two types are applicable based on application environments such as application space, required attraction force, and controllability. Magnetic bearing is generally designed based on the ratio (geometrical coefficient or geometrical efficiency) of pole width to rotor journal radius but proper ratio is only decided by the analysis. This is the difficulty of the magnetic bearing design. In this paper, proper design technology of the inner-rotor type and outer-rotor-type eight pole magnetic bearings is introduced and compared with the FEM analysis results, which verifies the proposed design procedure is suitable to be applied to the design of the magnetic bearings for the industrial applications and flywheel energy storage system.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.