• Title/Summary/Keyword: Geometrical Characteristics

Search Result 776, Processing Time 0.027 seconds

Some Factors of Influence on Paco Rabanne`s Fashion Design (파코 라반 복식의 조형적 특성에 영향을 미친 요인)

  • 최영옥
    • The Research Journal of the Costume Culture
    • /
    • v.7 no.5
    • /
    • pp.122-139
    • /
    • 1999
  • Paco Rabanne, who has created experimental and prophetic avant-garde fashion by cutting edge techniques and revolutionary new materials, is known as one of the most influential fashion designer of modern times. The purpose of this study is to analyze the various factors, including some major artistic movements, which influenced on the formative characteristics of Paco Rabanne\`s fashion design. First, Paco Rabanne\`s fantastic new materials is also influenced by his study in architecture and his own fantasies -which other people can hardly imagine- during his early childhood. Second, light one of the most important element in Paco Ranbanne\`s fashion design, shows some influence of medieval symbols of love and salvation. Third, the artistic trends which influenced on Paco Rabanne\`s fashion include surrealism, opart, and kinetic art. His use of new materials and avant -garde style represents the influence of surrealism. his experimental use of waving plastics and glittering metal during his early period is especially related with opart and kinetic art in the early 1960s which emphasize the artistic effect of light and movement. Fourth, the geometrical figures like triangles, rectangles, and circles represent the influence of Egyptian architecture like pyramids and the geometrical characteristics of Eguptian art. Fifth, Paco Rabanne\`s distinctive use of metal chains in his fashion shows the influence of the chain mail hauberk, the medieval knightly armour. By using the medieval material Paco Rabanne properly expressed the modern person\`s pain and suffering. Sixth, the ethnic elements of Egypt, Africa, Spain, and Japan reflect the experience in his former lives he insists he lived. The ethnic elements of his dresses emphasize the natural vitality and inheritance from the past.

  • PDF

Effect of the Configurations of Coolant Flow Passage on the Thermal-Flow Characteristics of Screw Compressor (스크류 압축기 냉각유로 형상 변화가 열유동 특성에 미치는 영향)

  • Cho, Sung-Wook;Seo, Hyeon-Seok;Shon, Kil-Won;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The thermal-flow characteristics of screw compressor were numerically investigated with various geometrical configurations of its coolant flow passage applied to the separate block for enhancing the heat transfer performance of it. The length ratio(Ls/D=4.8, 5.6, 6.4) and thickness ratio(t/D=0.2, 0.4, 0.6) of the separate block in the flow passage of the water jacket were adopted to design parameters. Results showed that the pressure drop and heat transfer were increased as the length of separate block increases due to the flow separation and centrifugal force. The results were graphically depicted with various flow and geometrical conditions.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

Nonlinear forced vibration of imperfect FG beams with hygro-thermal factor

  • Y.J. He;G.L She
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • This paper intends to analyze the nonlinear forced vibrations of functionally graded material (FGM) beams with initial geometrical defects in hygro-thermal ambiences. For this purpose, we assume that the correlation properties of the material alter along the thickness direction in succession and the surface of the beam is subjected to humid and thermal loads. Based on the Euler Bernoulli beam theory and geometrical non-linearity, we use the Hamiltonian principle to formulate a theoretical model with consideration of the hygrothermal effects. Galerkin's technique has been proposed for the control equations of discrete systems. The non-linear primary resonances are acquired by applying the modified Lindstedt-Poincare method (MLP). Verify the reliability of the data obtained through comparison with literature. The non-linear resonance response is reflected by amplitude-frequency response curves. The numerical results indicate that the resonances of FGM beams include three non-linear characteristics, namely hard springs, soft springs and soft-hard spring types. The response modalities of the structure may transform between those non-linear characteristics when material properties, spring coefficients, geometric defect values, temperature-humidity loads and even the external stimulus generate variations.

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (II) (Part II In the case of Pinned-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (II) (제II보 핀접합의 경우))

  • 정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.74-78
    • /
    • 1993
  • Compared with rigid-jointed latticed dome, in pinned-joint latticed dome, results of Ref.1 showed reduction of buckling strength by decline of junction's rotational rigidity. Moreover, with decline of junction's rotational rigidity, geometrical initial imperfection incurs more and more reduction of buckling-strength. This study, subsequently the case of rigid-joint domes, is aimed at analyzing buckling-characteristics of pinned-joint single-layer latticed domes with triangular network subjected to initial imperfection.

  • PDF

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (I) (Part I In the case of Rigid-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (I) (제I보 강접합의 경우))

  • 박정우;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.68-73
    • /
    • 1993
  • The geometrical initial imperfection is generally described that a dome digeresses from ideal shape. In actual domes the mode and amplitude for initial imperfection appear variously and affect buckling-strength sensitively. This study investigates the buckling characteristics of single-layer latticed domes with triangular network subjected to initial imperfection. Additionally, this study is to get the data that are to formulate the general equation taking initial imperfection into consideration.

  • PDF

Characteristic analysis for postbuckling analysis modules of stiffened composites shell structure (보강된 복합재료 쉘구조물에 대한 좌굴후 해석모듈의 특성분석)

  • Oh Se Hee;Kim Chun Gon;Kim Kwang Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.288-291
    • /
    • 2004
  • The characteristics of the buckling analysis module for stiffened composite structures were studied in this paper. Composite stiffened structures have geometrical asymmetry and material properties asymmetry. Due to these reason, postbuckling analysis was essential and the characteristics of postbuckling analysis modules for ABAQUS were researched. Static analysis module was considered. By considering the material nonlinearity, progressive failure mechanism was applied and buckling strength was estimated

  • PDF

An Experimental Study on the Springback Characteristics of Sheet Metals (금속판재(金屬板材)의 스프링백 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Jung Wan;Kim, Hyung Jong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.217-223
    • /
    • 1998
  • The springback characteristics of some sheet metals such as commercially pure aluminium, mild steel and stainless steel in a forming process are investigated experimentally. Three geometrical parameters for evaluating springback in the plane-strain draw-bending, which was a benchmark model of NUMISHEET '93 conference, are defined. The measurement of the springback parameters is carried out accurately and easily by using an image analysis system developed in this study. The effects of the blank holding pressure and tensile strength of the material on the springback are also examined.

  • PDF

Performance Characteristics of Time Delay and Integration(TDI) Satellite Imager for Altitude Change and Line-Of-Sight Tilt over Spherical Earth Surface

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.216-221
    • /
    • 2002
  • A spherical Earth surface is used fur realistic analysis of the geometrical performance characteristics about the variation of satellite altitude and 2-dimensional line-of-sight(LOS) tilt angle in a satellite imager using Time Delay and Integration(TDI) technique with fixed integration time. In the spherical Earth surface model TDI synchronization using LOS tilt is investigated as a solution to compensate geometric performance degradation due to altitude decrease. This result can be used fur a TDI CCD imager with variable integration time in a certain as well.

  • PDF