DOI QR코드

DOI QR Code

Nonlinear forced vibration of imperfect FG beams with hygro-thermal factor

  • Y.J. He (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • G.L She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2024.07.09
  • Accepted : 2024.10.02
  • Published : 2024.10.25

Abstract

This paper intends to analyze the nonlinear forced vibrations of functionally graded material (FGM) beams with initial geometrical defects in hygro-thermal ambiences. For this purpose, we assume that the correlation properties of the material alter along the thickness direction in succession and the surface of the beam is subjected to humid and thermal loads. Based on the Euler Bernoulli beam theory and geometrical non-linearity, we use the Hamiltonian principle to formulate a theoretical model with consideration of the hygrothermal effects. Galerkin's technique has been proposed for the control equations of discrete systems. The non-linear primary resonances are acquired by applying the modified Lindstedt-Poincare method (MLP). Verify the reliability of the data obtained through comparison with literature. The non-linear resonance response is reflected by amplitude-frequency response curves. The numerical results indicate that the resonances of FGM beams include three non-linear characteristics, namely hard springs, soft springs and soft-hard spring types. The response modalities of the structure may transform between those non-linear characteristics when material properties, spring coefficients, geometric defect values, temperature-humidity loads and even the external stimulus generate variations.

Keywords

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  2. Akbas, S.D. (2021), "Forced vibration responses of axially functionally graded beams by using Ritz Method", J. Appl. Comput. Mech., 7(1), 109-115. https://doi.org/10.22055/JACM.2020.34865.2491.
  3. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  4. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation", Steel Compos. Struct., 44(4), 543-553. https://doi.org/10.12989/scs.2022.44.4.543.
  5. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an Axially Functionally Graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlin. Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
  6. Al-Osta, M.A. (2022), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Compos. Struct., 43(1), 117-127. https://doi.org/10.12989/scs.2022.43.1.117.
  7. Ansari, R., Ershadi, M.Z., Laskoukalayeh, H.A., Oskouie, M.F. and Rouhi, H. (2023), "Hygrothermally-induced vibration analysis of porous FGM rectangular mindlin plates resting on elastic foundation", Int. J. Struct. Stab. Dyn., 24(09), 2450100. https://doi.org/10.1142/S0219455424501001.
  8. Assie, A.E., Mohamed, S.A., Abo-bakr, R.M., Mohamed, N. and Eltaher, M.A. (2024), "Neutral surface effect on nonlinear response of BDFG porous higher order plate rested on elastic foundations", Acta Mechanica, 235(5), 2629-2649. https://doi.org/10.1007/s00707-023-03849-z.
  9. Bot, I.K., Bousahla, A.A., Zemri, A., Sekkal, M., Kaci, A., Bourada, F., Tounsi, A., Ghazwani, M.H. and Mahmoud, A.S.R. (2022), "Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment", Steel Compos. Struct., 43(6), 821-837. https://doi.org/10.12989/scs.2022.43.6.821.
  10. Chen, S.H. and Cheung, Y.K. (1996), "Modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system", J. Sound Vib., 193(4), 751-762. https://doi.org/10.1006/jsvi.1996.0313.
  11. Chen, X.C. and Chen, L.T. (2021), "Imperfection sensitivity of nonlinear primary resonance behavior in bi-directional functionally graded porous material beam", Compos. Struct., 27, 114142. https://doi.org/10.1016/j.compstruct.2021.114142.
  12. Chen, Y., Fu, Y.M., Zhong, J. and Li, Y.L. (2017), "Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model", Nonlin. Dyn., 88(2), 1441-1452. https://doi.org/10.1007/s11071-016-3321-0.
  13. Chinnapandi, L.B.M., Pitchaimani, J., Eltaher, M.A. and Mohamed A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.815.
  14. Esen, I., Alazwari, M.A., Almitani, K.H., Eltaher, M.A. and Abdelrahman, A. (2023), "Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load", Adv. Nano. Res., 14(5), 475. https://doi.org/10.12989/anr.2023.14.5.475.
  15. Foroutan, K., Carrera, E. and Ahmadi, H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FGCNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A-Solid., 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
  16. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells", Appl. Math. Model., 77, 539-553. https://doi.org/10.1016/j.apm.2019.07.062.
  17. Fu, Y.M., Wang, J.Z. and Mao, Y.Q. (2012), "Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059.
  18. Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  19. Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Math. Model., 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
  20. Guo, L.M., Cai, J.W., Xie, Z.Y. and Li, C. (2024), "Mechanical responses of symmetric straight and curved composite microbeams", J. Vib. Eng. Technol., 12(2), 1537-1549. https://doi.org/10.1007/s42417-023-00924-6.
  21. Guo, X., Pu, G., Zhang, D.G. and Li, L. (2023), "Dynamic model of functionally graded flexible beams based on neutral axis and setting position", J. Vib. Eng. Technol., 12(1), 979-994. https://doi.org/10.1007/s42417-023-00888-7.
  22. Jin, H.J., Sui, S.H., Zhu, C.X. and Li, C. (2023), "Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects", J. Vib. Eng. Technol., 11(2), 537-549. https://doi.org/10.1007/s42417-022-00592-y.
  23. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  24. Lee, C.Y. and Kim, J.H. (2014), "Degradation of thermal postbuckling behaviors of functionally graded material in aero-hygrothermal environments", Compos. Struct., 118, 228-233. https://doi.org/10.1016/j.compstruct.2014.07.055.
  25. Lee, C.Y. and Kim, J.H. (2015), "Aero-hygrothermal effects on stability regions for functionally graded panels", Compos. Struct., 133, 257-264. https://doi.org/10.1016/j.compstruct.2015.07.085.
  26. Li, C., Zhu, C.X., Lim, C.W. and Li, S. (2022), "Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading", Appl. Math Mech., 43(12), 1821-1840. https://doi.org/10.1007/s10483-022-2917-7.
  27. Li, C., Zhu, C.X., Zhang, N., Sui, S.H. and Zhao, J.B. (2022), "Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory", Appl. Math Model., 110, 583-602. https://doi.org/10.1016/j.apm.2022.05.044.
  28. Li, H.N., Wang, W., Lai, S.K., Yao, L.Q. and Li, C. (2024), "Nonlinear vibration and stability analysis of rotating functionally graded piezoelectric nanobeams", Int. J. Struct. Stab. Dyn., 24(9), 2450103. https://doi.org/10.1142/S0219455424501037.
  29. Li, L., Zhang, D.G. and Zhu, W.D. (2014), "Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect", J. Sound Vib., 333(5), 1526-1541. https://doi.org/10.1016/j.jsv.2013.11.001.
  30. Li, X.Q., Song, M.T., Yang, J. and Kitipornchai, S. (2019), "Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams", Nonlin. Dyn., 95(3), 1807-1826. https://doi.org/10.1007/s11071-018-4660-9.
  31. Liu, P.P., Tang, J., Jiang, B.L. and Li, Y.H. (2023), "Nonlinear parametric vibration analysis of the rotating thin-walled functionally graded material hyperbolic beams", Math. Method. Appl. Sci., 47(4), 2952-2965. https://doi.org/10.1002/mma.9787.
  32. Liu, P.P., Tang, J., Li, Y.H. and Kun, Z. (2024), "Static and dynamic analysis of the postbuckling of axially moving spin beams", Mech. Adv. Mater. Struct., 31(21), 5300-5314. https://doi.org/10.1080/15376494.2023.2214919.
  33. Lotfan, S., Anamagh, M.R., Bediz, B. and Cigeroglu, E. (2022), "Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects", Nonlin. Dyn., 107(1), 533-558. https://doi.org/10.1007/s11071-021-07055-1.
  34. Machado, S.P. and Piovan, M.T. (2013), "Nonlinear dynamics of rotating box FGM beams using nonlinear normal modes", Thin Wall. Struct., 62, 158-168. https://doi.org/10.1016/j.tws.2012.09.005.
  35. Maruani, J., Bruant, I., Pablo, F. and Gallimard, L. (2017), "A numerical efficiency study on the active vibration control for a FGPM beam", Compos. Struct., 182, 478-486. https://doi.org/10.1016/j.compstruct.2017.09.036.
  36. Mohamed, S.A., Assie, A.E. and Eltaher, M.A. (2023), "Novel incremental procedure in solving nonlinear static response of 2D-FG porous plates", Thin Wall. Struct., 189, 110779. https://doi.org/10.1016/j.tws.2023.110779.
  37. Nesic, N., Cajic, M., Karlicic, D., Obradovic, A. and Simonovic, J. (2022), "Nonlinear vibration of a nonlocal functionally graded beam on fractional Visco-Pasternak foundation", Nonlin. Dyn., 1-24. https://doi.org/10.1007/s11071-021-07081-z.
  38. Penna, R., Feo, L., Lovisi, G. and Fabbrocino, F. (2022), "Application of the higher-order hamilton approach to the nonlinear free vibrations analysis of Porous FG nano-beams in a hygrothermal environment based on a local/nonlocal stress gradient model of elasticity", Nanomater., 12(12), 2098. https://doi.org/10.3390/nano12122098.
  39. Penna, R., Lovisi, G. and Feo, L. (2021), "Dynamic response of multilayered polymer Functionally Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) nano-beams in hygrothermal environment", Polym., 13(14), 2340. https://doi.org/10.3390/polym13142340.
  40. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  41. Shen, H.S. (2015), "Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: Theory and solutions", Compos. Struct., 125, 698-705. https://doi.org/10.1016/j.compstruct.2014.12.024.
  42. Shen, H.S. and Yang, D.Q. (2015), "Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments", Appl. Math. Model., 39(5-6), 1480-1499. https://doi.org/10.1016/j.apm.2014.09.010.
  43. Sheng, G.G. and Wang, X. (2018), "Nonlinear vibration of FG beams subjected to parametric and external excitations", Eur. J. Mech. A-Solid., 71, 224-234. https://doi.org/10.1016/j.euromechsol.2018.04.003.
  44. Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
  45. Sobhy, M. and Radwan, A.F. (2023), "Porosity and size effects on electro-hygrothermal bending of FG sandwich piezoelectric cylindrical shells with porous core via a four-variable shell theory", Case Stud. Therm. Eng., 45, 102934. https://doi.org/10.1016/j.csite.2023.102934.
  46. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
  47. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  48. Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  49. Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  50. Sui, S.H., Zhu, C.X., Li, C. and Lei, Z.X. (2023), "Free vibration of axially traveling moderately thick FG plates resting on elastic foundations", J. Vib. Eng. Technol., 11, 329-341. https://doi.org/10.1007/s42417-022-00582-0.
  51. Tang, Y., Lv, X.F. and Yang, T.Z. (2019), "Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration", Compos. Part B-Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  52. Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B-Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
  53. Wang, X., Wang, G., Chen, Z., Lim, C.W., Li, S. and Li, C. (2024), "Controllable flexural wave in laminated metabeam with embedded multiple resonators", J. Sound Vib., 581, 118386. https://doi.org/10.1016/j.jsv.2024.118386.
  54. Xu, J.Q. and She, G.L. (2023), "Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection", Comput. Concrete, 32(6), 543-551. https://doi.org/10.12989/cac.2023.32.6.543.
  55. Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93(11), 2992-3001. https://doi.org/10.1016/j.compstruct.2011.05.003.
  56. Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H., ... & Guo, S. (2021), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
  57. Zhang, J.H., Chen, L.K. and Lv, Y.L. (2019), "Elastoplastic thermal buckling of functionally graded material beams", Compos. Struct., 224, 111014. https://doi.org/10.1016/j.compstruct.2019.111014.
  58. Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  59. Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  60. Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.