• 제목/요약/키워드: Geometric-based Design

검색결과 768건 처리시간 0.028초

3차원 측정기를 이용한 Airfoil Edge 형상의 Fitting 방법에 관한 연구 (A Study on Fitting the Edge Profile of Airfoil with Coordinate Measuring Machines)

  • 강진우;변재현
    • 산업공학
    • /
    • 제13권4호
    • /
    • pp.703-708
    • /
    • 2000
  • In manufacturing processes, manufacturing features always deviate somewhat from their nominal design specifications due to several types of errors. This study suggests a fitting algorithm of the geometric profile parameters of leading and trailing edges for turbine compressor airfoils. In reality, industry personnels inspect the airfoil profile by trial-and-error method to determine the geometric feature parameters. In this study we propose an exploration approach based on factorial design with center point to minimize the effect of measurement errors caused by probe slip. By adopting the fitting method developed in this paper, one can enhance the precision and efficiency of fitting the airfoil edge profile.

  • PDF

측량 데이터를 이용한 현수교의 형상오차 원인 추정 (Estimation of Geometric Error Sources of Suspension Bridge using Survey Data)

  • 박용명;조현준;정진환;김남식
    • 한국강구조학회 논문집
    • /
    • 제19권3호
    • /
    • pp.313-321
    • /
    • 2007
  • 본 연구에서는 공용 중인 현수교에서 측량된 데이터를 이용하여 현수교의 형상오차 원인을 추정하는 방법을 제시하였다. 주케이블의 여러 점에서 측량된 데이터와 설계시의 형상과의 차이를 형상오차로 정의하고, 현수교의 형상오차 원인으로 보강형 자중의 변동과 지반의 크리프로 인한 앵커리지 기초의 변형으로 가정하였다. 보강형 자중의 변동 및 앵커리지 기초의 변형에 대한 현수교 구조계의 영향행렬을 이용하여 주케이블의 형상오차를 유발한 자중의 변동량 및 기초의 변형량을 추정하였다. 공용 중인 광안대교를 대상으로 본 기법의 타당성을 검토한 후 실제 측량 데이터를 이용하여 동 교량의 형상오차 원인 분석에 적용하였다.

특징형상기법을 원용한 사출금형 설계시스템 연구 (A Study on feature-based Design System for Mold and Moldbase)

  • 허용정
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.101-106
    • /
    • 2001
  • 사출성형 제품 및 금형설계를 위한 통합형 CAD시스템이 연구되었다. 현존하는 CAD시스템은 주로 기하학적 모델링 기능만을 제공하고 있으나 본 연구에서는 제품설계, 금형설계, 몰드베이스 선정, 공정설계를 통합하여 설계할 수 있도록 CAD/CAPP/CAE를 연계한 설계시스템을 구성하였다. 특징형상 기법을 비롯하여 다양한 방법론이 시스템 구성을 위해 연구되었다. 이러한 통한형 설계시스템은 동시설계를 위해 유용하게 사용될 수 있는 진전된 개념의 설계시스템이다.

  • PDF

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

아프리카 직물 문양을 응용한 니트디자인 -컬러 니트 자카드를 응용하여- (Knit Design by Applying African Textile Pattern -Focused on Color Knit Jacquard-)

  • 유경민;김영주;이연희
    • 한국의류학회지
    • /
    • 제31권9_10
    • /
    • pp.1475-1486
    • /
    • 2007
  • This study aims to develop knitted ware design to meet desire to express diversity in the modern fashion design so that we designed knitted ware by applying african geometric pattern and color to suggest new knitted ware design. We collect data about african texture pattern through technical books, publications, internet, and preceding research and visit and investigate the African museum. We investigate knitted Jacquard texture through preceding research and collect sample and data which is insufficient in the data source. The conclusions in this study are summarized as follows: First, African textile pattern is formulated with animism based on their religious view of art for a basis and African regards nature like animal and plant as a motive and interprets nature in the so that they can create symbolized geometric features that constitute African texture pattern. Those patterns is composed of extremely geometric figures so that they we fit to apply for color jacquad knit design. Second, color knitted jacquad can be distinguished by knitting method and status of knitting as 7 kinds of techniques such as Nomal, Bird'eye, Floating, Tubular, Ladder's back, Blister, Transfer Jacquard, and as a result of preceding research and knitting texture directly, jacquard technique makes different texture under same condition like consistent spinning rate and same crochet hook. Third, Bird'eye Jacquard used generally to make knitted ware and Ladder's back Jacquard, Tubular Jacquard used to make knitted ware light are fit to apply them to 7GG and 12GG machines. We design a cloak as a outer garment, a coat shaped like one-piece dress and a coat with hood by using Tubular Jacquard which can make thick texture and design a jacket, a skirt and a one-piece dress by using Bird'eye Jacquard. we make a light and flimsy one-piece dress by using Ladder's back Jacquard. Fourth, we apply the contrast of $4{\sim}6$ color and line and the contrast of texture and raw material to jacquard in order to emphasize texture property and visual property.

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

중국 전통 여성복 디자인 요소의 조형적 분석과 전통복식을 융합한 현대 중국 여성복 선호도에 관한 연구 (A study on the formative analysis of Chinese traditional women's clothing design elements and preference of modern Chinese women's clothing reflecting traditional clothing)

  • 이계진;김지현;나미향
    • 한국의상디자인학회지
    • /
    • 제24권4호
    • /
    • pp.117-133
    • /
    • 2022
  • In order to reflect traditional elements in modern design, designers should be able to creatively apply elements of traditional Chinese clothing. To understand this, a deep understanding of and insights into the traditional clothing culture are required. In this study, the characteristics of traditional Chinese women's clothing from the Wei, Jin, and Northern and Southern Dynasties of China to the Qing Dynasty were analyzed by dividing them into silhouette, color, pattern, materials, and detail. The characteristics of the silhouette were classified into A, H, X, and O types, of which types A and H were the most common. As for the color characteristics, there are relatively many five cardinal colors, and for the contrast of colors complementary colors were mainly used. As the for pattern characteristics, real patterns, animal patterns, character patterns, geometric patterns, and mixed patterns were used. Four types of materials were mainly used: silk, hemp, cotton, and wool. The detail characteristics were also anlyzed by classifying them into collar, sleeve, neckband, and gusset. Based on the results of this analysis, a satisfaction survey was conducted on the design of modern Chinese women's clothing. The result of satisfaction with design elements showed that the images of vest and suit were most preferred, H and X silhouettes, and yellow and white were the most preferred. Geometric and plant patterns were preferred, as were silk and acetate materials. Based on the result of chi-square analysis of design element preferences according to the characteristics of the subject, there was no difference according to occupation, residential area, or income, and there were differences in silhouette, color, materials, and detail according to age.

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani;Javad, Haghshenas
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.67-82
    • /
    • 2023
  • Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.

관류익형송풍기의 공력해석 및 설계 (Aerodynamic Analysis and Design of Inline-Duct Fan)

  • 곽은민;김광용;서성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF