• Title/Summary/Keyword: Geometric structure

Search Result 991, Processing Time 0.02 seconds

An Analysis of Lessons on Geometric Patterns for Developing Functional Thinking of Elementary School Students (초등학생의 함수적 사고 신장을 위한 기하 패턴 지도 사례의 분석)

  • Pang, JeongSuk;SunWoo, Jin
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.4
    • /
    • pp.769-789
    • /
    • 2016
  • Pattern activities are useful to develop functional thinking of young students, but there has been lack of research on how to teach patterns. This study explored teaching methods of geometric patterns for developing functional thinking of elementary school students, and then analyzed the lessons in which such methods were implemented. For this, three classrooms of fourth grades in elementary schools were selected and three teachers taught geometric patterns on the basis of the same lesson plan. The lessons emphasized noticing the commonality of a given pattern, expanding the noti ce for the commonality, and representing the commonality. The results of this study showed that experience of analyzing the structure of a geometric pattern had a significant impact on how the fourth graders reasoned about the generalized rules of the given pattern and represented them in various methods. This paper closes with several implications to teach geometric patterns in a way to foster functional thinking.

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

Effect of prestressing on the natural frequency of PSC bridges

  • Shin, Soobong;Kim, Yuhee;Lee, Hokyoung
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.241-253
    • /
    • 2016
  • Depending on the researcher, the effect of prestressing on the natural frequency of a PSC (prestressed concrete) structure appear to have been interpreted differently. Most laboratory tests on PSC beams available showed that the natural frequency is increased appreciably by prestressing. On the other hand, some other references based on field experience argued that the dynamic response of a PSC structure does not change regardless of the prestressing applied. Therefore, the deduced conclusions are inconsistent. Because an experiment with and without prestressing is a difficult task on a full size PSC bridge, the change in natural frequency of a PSC bridge due to prestressing may not be examined through field measurements. The study examined analytically the effects of prestressing on the natural frequency of PSC bridges. A finite element program for an undamped dynamic motion of a beam-tendon system was developed with additional geometric stiffness. The analytical results confirm that a key parameter in changing the natural frequency due to prestressing is the relative ratio of prestressing to the total weight of the structure rather than the prestressing itself.

A Study on the Geometrical Expression Shown in the Architecture of Guarino Guarini - Focusing on the Analysis of Spatial Form in Guarino Guarini's Church of San Lorenzo- (구아리노 구아리니 건축에 나타난 기하학적 표현에 관한 연구 - 그의 산 로렌쪼 성당의 공간형태 분석을 중심으로 -)

  • Han Myoung-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.95-102
    • /
    • 2005
  • Guarini's architectural contribution has simply focused on the dome structure that has been known to us; however, his geometric and spatial construction has been overlooked so far Through this study, it has been demonstrated that the dome structure was simply part of geometrical forms that Guarini wanted to express ultimately and it functioned as a geometrical element such as the network combined with the entire spatial structure. The purpose of this study is to reevaluate Guarini's architectural thought by means of investigating the ultimate principles of spatial composition appeared in the late Baroque architecture through the analysis of the principles of spatial composition and organized formal Idioms by Guarini's geometrical concepts. Besides, it has been assumed that such geometrical concepts by Guarini's mathematical proportion and his reiteration and change of diagrams could be clearly distinguished from the Classical geometry in the Renaissance and Guarini. suggested a way to create a new space through more active and amusing application and transformation. In this aspect, Guarini's principles of geometric composition will be one of the role models that need to be seriously reconsidered in chaotic reality of modern architecture.

Effects of Geometric Characteristics on the Ultimate Behavior of Steel Cable-stayed Bridges (기하학적 특성이 강사장교의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Shin, Do Hyoung;Choi, Byung Ho;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.327-336
    • /
    • 2012
  • This study presents the effects of various geometric properties on the ultimate behavior of steel cable-stayed bridges. In general, cable-stayed bridges are well known as a very efficient structural system, because of those geometric characteristics, but at the same time, the structure also shows complex structural behavior including various nonlinearities which significantly affect to the ultimate behavior of the structure. In this study, the effects of various geometric properties of main members on the ultimate behavior under specific live load cases, which had been studied in previous studies, were investigated using a rational analytical method. In this parametric study, sectional dimensions of main members were considered as main geometric parameters. For the rational ultimate analysis under specific live load cases, the 2-step analysis method, which contains initial shape analysis and live load analysis, was used. As the analysis model, 920.0 m long steel cable-stayed bridges were used and two different types of cable arrangement were considered to study the effect of the cable arrangement types. Through this study, the effects of various geometric properties on the characteristics of the ultimate behavior of steel cable-stayed bridges were intensively investigated.

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.

A Study on the Characteristics of Geometry in Madeleine Vionnet´s Works (마들렌느 비오네의 작품에 나타난 기하학적 특성에 관한 연구)

  • 유수경;김의경
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.763-780
    • /
    • 2002
  • The aim of this research is to analyze Vionnet´s geometric features, which can be regarded as the key formative beauty among the external characteristics of her works. and to thereby establish the theory that her works emitted a time-transcending life force because they were patterns designed based on a geometrical frame of mind. To prove such argument, studies to understand the basic geometrical aspects appearing in her works will be made by taking a look at the general features of geometry, viewing Vionnet´s philosophy for designing, and examining the geometric cutting methods. The period covered in this paper will center mainly on dresses Vionnet made from her very active days in the fashion sector, 1919. till when she retired from the fashion industry, around 1939. What's outstanding about Vionnet´s geometric principle expressed in her works is the unique cutting method that acknowledges the silhouette of the human body as a cubic or three-dimensions concept, through insight of the human body, the mechanics of the materials, and geometry. Vionnet introduced a simple and elegant design by combining geometric figure cuts, such as rectan히es. quadrants, and triangles. Moreover, she created a new sewing structure that plans everything about the materials to the tiniest detail, resulting in producing a softer style With this, Vionnet showed the geometrical correlation can bring about harmony and the beauty of ideal proportion, forming the source of eternal beauty. As discussed so fu, the geometrical characteristics appearing in Vionnet´s works are marked such as spirals, zig-zag lines, asymmetries. panels, gradation, golden proportion, and the mobius-band.

  • PDF

Equilibrium Stress Mode Determination of Tensegrity Structure by CAD (CAD를 이용한 텐세그리티 구조물의 평형응력모드 결정법)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Cable dome structures are composed of cables-masts and the cables should be in pre-tension since a structure without pre-tension is not stable. Under the pretension, self equilibrium stress state is the main characteristic of a cable dome structure. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. The proposed method which is called geometric method has the unique characteristic of visualization of the force mode needed for maintenance of self-equilibrium. The basic theory for a self equilibrium of structure is that the summation of forces at each joint without any external load should be zero. The simplicity of the method which involves only drawing close polygon with the aid of suitable CAD software has been illustrated by means of a example. The results compared with mechanical calculation and existed method and shows good agreement.

U-FLATNESS AND NON-EXPANSIVE MAPPINGS IN BANACH SPACES

  • Gao, Ji;Saejung, Satit
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.493-506
    • /
    • 2017
  • In this paper, we define the modulus of n-dimensional U-flatness as the determinant of an $(n+1){\times}(n+1)$ matrix. The properties of the modulus are investigated and the relationships between this modulus and other geometric parameters of Banach spaces are studied. Some results on fixed point theory for non-expansive mappings and normal structure in Banach spaces are obtained.