• Title/Summary/Keyword: Geometric distribution

Search Result 680, Processing Time 0.025 seconds

Parametric Study of Multi-Element Airfoils' Aerodynamic Characteristics (다중-익형의 공력 특성에 대한 파라미터 연구)

  • Park Min-Jeoung;Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.88-93
    • /
    • 2002
  • In the present research, a parametric study of aerodynamic characteristics for multi-element airfoils is performed. The major geometric parameters of interest are the gap distance between airfoils and relative deflection angle of slat/flap. The present results are mainly obtained by using inviscid flow calculation, and the aerodynamic characteristics are focused on the surface pressure distribution and the lifts. The results of the present research may be used as not only qualitative data but also quantitative data for small angle of attack flows, where the viscous effect does not play major role in terms of surface pressure distribution and lifts. A further research in this subject including viscous calculation and more geometric parameters is to be performed in the future.

  • PDF

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.343-350
    • /
    • 2015
  • We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

A Study on Worker Exposure to Hexavalent Chromium in Plating 0peration (중소기업 도금공정에서의 6가 크롬 폭로에 관한 연구)

  • Cheong, Hoe Kyeong;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This study was performed at eleven small-sized plating factories located in Seoul, Incheon, Ansan, and Taejeon from July 21 to October 6, 1992. The major objectives of this study were to evaluate worker exposure to hexavalent chromium and local exhaust ventilation (L.E.V.) systems at the chromium plating operations. The most suitable L.E.V. systems for chromium plating tanks were designed as examples for recommendation to the industry. The results are summarized as follows. The range of chromium plating operations investigated included decorative, hard, and black chromium plating on several kinds of parts. Most of plating tanks were not equipped with proper control methods against emission of hexavalent chromium mists and workers were not wearing appropriate personal protectives. The ariborne hexavalent chromium concentrations showed an approximate lognormal distribution. The geometric means of both personal and area samples were within the Korean and ACGIH standards, $50{\mu}g/m^3$. However, in comparison with the NIOSH criterion, $1{\mu}g/m^3$, the geometric means of personal samples at two factories and the geometric means of area samples at two factories exceeded it. The geometric means of personal and area samples of high exposure groups (above the NIOSH criterion) were 7 and 27 times higher than those of low exposure groups (below the NIOSH criterion), respectively. The L.E.V. systems of high exposure groups were improperly designed, and the factory with the highest exposure level had no L.E.V. systems at all on chemical etching process. Whereas at factories of low exposure groups, mist control methods such as mist suppressants, tank cover, and/or auxillary L.E.V. systems were added to L.E.V systems. The evaluation of L.E.V. systems showed that there was no chromium plating operation satisfying the ACGIH criteria for capture velocity, slot velocity, and exhaust rate simultaneously. To increase performance of L.E.V. systems, it must be designed to minimize the impact of boundary layer separation. Push-pull ventilation hood and downward plenum ventilation hood were suggested for the Korean industry.

  • PDF

A simulation study for the approximate confidence intervals of hypergeometric parameter by using actual coverage probability (실제포함확률을 이용한 초기하분포 모수의 근사신뢰구간 추정에 관한 모의실험 연구)

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1175-1182
    • /
    • 2011
  • In this paper, properties of exact confidence interval and some approximate confidence intervals of hyper-geometric parameter, that is the probability of success p in the population is discussed. Usually, binomial distribution is a well known discrete distribution with abundant usage. Hypergeometric distribution frequently replaces a binomial distribution when it is desirable to make allowance for the finiteness of the population size. For example, an application of the hypergeometric distribution arises in describing a probability model for the number of children attacked by an infectious disease, when a fixed number of them are exposed to it. Exact confidence interval estimation of hypergeometric parameter is reviewed. We consider the approximation of hypergeometirc distribution to the binomial and normal distribution respectively. Approximate confidence intervals based on these approximation are also adequately discussed. The performance of exact confidence interval estimates and approximate confidence intervals of hypergeometric parameter is compared in terms of actual coverage probability by small sample Monte Carlo simulation.

EMPIRICAL REALITIES FOR A MINIMAL DESCRIPTION RISKY ASSET MODEL. THE NEED FOR FRACTAL FEATURES

  • Christopher C.Heyde;Liu, S.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1047-1059
    • /
    • 2001
  • The classical Geometric Brownian motion (GBM) model for the price of a risky asset, from which the huge financial derivatives industry has developed, stipulates that the log returns are iid Gaussian. however, typical log returns data show a distribution with much higher peaks and heavier tails than the Gaussian as well as evidence of strong and persistent dependence. In this paper we describe a simple replacement for GBM, a fractal activity time Geometric Brownian motion (FATGBM) model based on fractal activity time which readily explains these observed features in the data. Consequences of the model are explained, and examples are given to illustrate how the self-similar scaling properties of the activity time check out in practice.

  • PDF

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Selective Encryption Algorithm for Vector Map using Geometric Objects in Frequency Domain

  • Pham, Ngoc-Giao;Kwon, Ki-Ryong;Lee, Suk-Hwan;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1312-1320
    • /
    • 2017
  • Recently, vector map data is developed and used in many domains widely. In the most cases, vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the production process of vector maps is considerably complex and consumes a lot of money and human resources. Therefore, the secured storage and transmission are necessary to prevent the illegal copying and distribution from hacker. This paper presents a selective encryption algorithm using geometric objects in frequency domain for vector map data. In the proposed algorithm, polyline and polygon data in vector map is the target of the selective encryption process. Experimental results verified that proposed algorithm is effectively and adaptive the requirements of security.

A numerical procedure for reinforced concrete columns with a focus on stability analysis

  • Pires, Susana L.;Silva, Maria Cecilia A.T.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.657-674
    • /
    • 2014
  • The purpose of this paper is to present a numerical procedure to analyse reinforced concrete columns subjected to combined axial loads and bending that rigorously considers nonlinear material and nonlinear geometric characteristics. Column design and stability analysis are simultaneously regarded. A finite element method is used for calculating displacements and the material and geometric nonlinearities are taken into account using an iterative process. A computer program is developed from the proposed numerical procedure, and the efficiency of the program is verified against available experimental data. The model applies to constant rectangular cross sectional columns with symmetric reinforcement distribution.

A Greedy Merging Method for User-Steered Mesh Segmentation

  • Ha, Jong-Sung;Park, Young-Jin;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.25-29
    • /
    • 2007
  • In this paper, we discuss the mesh segmentation problem which divides a given 3D mesh into several disjoint sets. To solve the problem, we propose a greedy method based on the merging priority metric defined for representing the geometric properties of meaningful parts. The proposed priority metric is a weighted function using five geometric parameters, those are, a distribution of Gaussian map, boundary path concavity, boundary path length, cardinality, and segmentation resolution. In special, we can control by setting up the weight values of the proposed geometric parameters to obtain visually better mesh segmentation. Finally, we carry out an experiment on several 3D mesh models using the proposed methods and visualize the results.

A Study on the GCP Disposition of KOMPSAT-1

  • Seo, Dong-Ju;Jang, Ho-Sik;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • There are invisible wars going on to preoccupy required satellite information for national defense, industry and living in the out space. Therefore, Korea has developed and successfully launched KOMPSAT (Korea Multi-Purpose SATellite), Korea's first multi-pur pose applications satellite, on December 21, 1999. In the course of geometric corrections with KOMPSAT-1 images, an accuracy of GCP collections is analyzed by the coordinated of digital map respective and an accuracy according to the GCP disposition was analyzed as well. For disposition of GCP, it turned out that even distribution on the whole screen contributes to promote accuracy. These are expected to used as basic data in putting the KOMPSAT-1 geometric correction into practical use.

  • PDF