• Title/Summary/Keyword: Geometric constraint graph

Search Result 6, Processing Time 0.023 seconds

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

A Study on the Geometric Constraint Solving with Graph Analysis and Reduction (그래프의 분석과 병합을 이용한 기하학적제약조건 해결에 관한 연구)

  • 권오환;이규열;이재열
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-88
    • /
    • 2001
  • In order to adopt feature-based parametric modeling, CAD/CAM applications must have a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this paper, we describe a graph constructive approach to solving geometric constraint problems. Usually, a graph constructive approach is efficient, however it has its limitation in scope; it cannot handle ruler-and-compass non-constructible configurations and under-constrained problems. To overcome these limitations. we propose an algorithm that isolates ruler-and-compass non-constructible configurations from ruler-and-compass constructible configurations and applies numerical calculation methods to solve them separately. This separation can maximize the efficiency and robustness of a geometric constraint solver. Moreover, the solver can handle under-constrained problems by classifying under-constrained subgraphs to simplified cases by applying classification rules. Then, it decides the calculating sequence of geometric entities in each classified case and calculates geometric entities by adding appropriate assumptions or constraints. By extending the clustering types and defining several rules, the proposed approach can overcome limitations of previous graph constructive approaches which makes it possible to develop an efficient and robust geometric constraint solver.

  • PDF

CBAbench: An AutoCAD-based Dynamic Geometric Constraint System

  • Gong, Xiong;Wang, Bo-Xing;Chen, Li-Ping
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.173-181
    • /
    • 2006
  • In this paper, an integration framework of Geometric Constraint Solving Engine and AutoCAD is presented, and a dynamic geometric constraint system is introduced. According to inherent orientation features of geometric entities and various Object Snap results of AutoCAD, the' proposed system can automatically construct an under-constrained geometric constraint model during interactive drawing. And then the directed constraint graph in a geometric constraint model is realtime modified in order to produce an optimal constraint solving sequence. Due to the open object-oriented characteristics of AutoCAD, a set of user-defined entities including basic geometric elements and graphics constraint relations are defined through derivation. And the custom-made Object Reactor and Command Reactor are also constructed. Several powerful characteristics are achieved based on these user-defined entities and reactors, including synchronously processing geometric constraint information while saving and opening DWG files, visual constraint relations, and full adaptability to Undo/Redo operations. These characteristics of the proposed system can help the designers more easily manage geometric entities and constraint relations between them.

Polygon Modeling with Constraint Management (구속조건 관리를 이용한 다각형 모델링)

  • 김기현;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.145-153
    • /
    • 1998
  • An approach has been developed to generate parametric models with Boolean operations. The approach combines Boolean operations and graph manipulation on the constraints imposed on primitives. A Boolean operation is first performed on two primitives and new geometric elements such as vertices and edges are computed. Then to generate the constraint graph of the polygon the each constraints graph of two primitives are merged by adding the new geometric elements with its corresponding constraints. In the merging process, some of the geometric elements belonging to the primitives may be eliminated based on its contribution to the polygon. A computer implementation in a 2D space is described to illustrate the approach with examples.

  • PDF

A Parametric Approach to Feature-based Modeling (파라메트릭 접근방법에 의한 특징형상을 이용한 모델링)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.242-256
    • /
    • 1996
  • Although feature-based design is a promising approach to fully integrating CAD/CAM, current feature-based design approaches seldom provide methodologies to easily define and design features. This paper proposes a new approach to integrating parametric design with feature-based design to overcome those limitations by globally decomposing a design into a set of features and locally defining and positioning each feature by geometric constraints. Each feature is defined as a parametric shape which consists of a feature section, attributes, and a set of constraints. The generalized sketching and sweeping techniques are used to simplify the process of designing features. The proposed approach is knowledge-based and its computational efficiency in geometric reasoning is improved greatly. Parametrically designed features not only have the advantage of allowing users to efficiently perform design changes, but also provide designers with a natural design environment in which they can do their work more naturally and creatively.

  • PDF

A partially occluded object recognition technique using a probabilistic analysis in the feature space (특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구)

  • 박보건;이경무;이상욱;이진학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1946-1956
    • /
    • 2001
  • In this paper, we propose a novel 2-D partial matching algorithm based on model-based stochastic analysis of feature correspondences in a relation vector space, which is quite robust to shape variations as well as invariant to geometric transformations. We represent an object using the ARG (Attributed Relational Graph) model with features of a set of relation vectors. In addition, we statistically model the partial occlusion or noise as the distortion of the relation vector distribution in the relation vector space. Our partial matching algorithm consists of two-phases. First, a finite number of candidate sets areselected by using logical constraint embedding local and structural consistency Second, the feature loss detection is done iteratively by error detection and voting scheme thorough the error analysis of relation vector space. Experimental results on real images demonstrate that the proposed algorithm is quite robust to noise and localize target objects correctly even inseverely noisy and occluded scenes.

  • PDF