• Title/Summary/Keyword: Geometric calibration

Search Result 180, Processing Time 0.025 seconds

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

Camera Calibration Using Neural Network with a Small Amount of Data (소수 데이터의 신경망 학습에 의한 카메라 보정)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2019
  • When a camera is employed for 3D sensing, accurate camera calibration is vital as it is a prerequisite for the subsequent steps of the sensing process. Camera calibration is usually performed by complex mathematical modeling and geometric analysis. On the other contrary, data learning using an artificial neural network can establish a transformation relation between the 3D space and the 2D camera image without explicit camera modeling. However, a neural network requires a large amount of accurate data for its learning. A significantly large amount of time and work using a precise system setup is needed to collect extensive data accurately in practice. In this study, we propose a two-step neural calibration method that is effective when only a small amount of learning data is available. In the first step, the camera projection transformation matrix is determined using the limited available data. In the second step, the transformation matrix is used for generating a large amount of synthetic data, and the neural network is trained using the generated data. Results of simulation study have shown that the proposed method as valid and effective.

Camera Modeling for Kinematic Calibration of a Robot Manipulator (로봇 매니퓰레이터의 자세 보정을 위한 카메라 모델링)

  • 왕한흥;장영희;김종수;이종붕;한성연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.179-183
    • /
    • 2002
  • This paper presents a new approach to the calibration of a SCARA robot orientation with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. radial distortion causes an inward or outward displacement of a given Image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

Camera Modeling for Kinematic Calibration of a Industrial Robot (산업용 로봇의 자세 보정을 위한 카메라 모델링)

  • 왕한흥;장영희;김종수;이종붕;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.117-121
    • /
    • 2001
  • This paper presents a new approach to the calibration of a SCARA robot orientation with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF

Development of a Parallel-Typed CNC Machine (병렬기구형 CNC 공작기계의 개발)

  • Lee, Min-Ki;Choi, Byung-Oh;Kim, Tae-Sung;Park, Kun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.535-540
    • /
    • 2000
  • This paper presents the development of a Parallel-Typed CNC Machining Tool. It is specially designed to machine a complex shaped workpiece by controlling the orientation of the tool. The inverse/direct kinematics of a parallel mechanism is derived and implemented in a PC based controller. With graphics icons, the GUI (Graphic User Interface) program is developed for the CNC programing. The calibration is accomplished by geometric constraint motion, which is a parallel motion of the platform with respect to a table. The calibration result is introduced and the future study is proposed.

  • PDF

Geometric Correction for Uneven Quadric Projection Surfaces Using Recursive Subdivision of B$\acute{e}$zier Patches

  • Ahmed, Atif;Hafiz, Rehan;Khan, Muhammad Murtaza;Cho, Yongju;Cha, Jihun
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1115-1125
    • /
    • 2013
  • This paper presents a scheme for geometric correction of projected content for planar and quadratic projection surfaces. The scheme does not require the projection surface to be perfectly quadratic or planar and is therefore suitable for uneven low-cost commercial and home projection surfaces. An approach based on the recursive subdivision of second-order B$\acute{e}$zier patches is proposed for the estimation of projection distortion owing to surface imperfections. Unlike existing schemes, the proposed scheme is completely automatic, requires no prior knowledge of the projection surface, and uses a single uncalibrated camera without requiring any physical markers on the projection surface. Furthermore, the scheme is scalable for geometric calibration of multi-projector setups. The efficacy of the proposed scheme is demonstrated using simulations and via practical experiments on various surfaces. A relative distortion error metric is also introduced that provides a quantitative measure of the suppression of geometric distortions, which occurs as the result of an imperfect projection surface.

A New Solution for Projective Reconstruction Based on Coupled Line Cameras

  • Lee, Joo-Haeng
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.939-942
    • /
    • 2013
  • We provide a new solution for the projective reconstruction problem based on coupled line cameras (CLCs) and their geometric properties. The proposed solution is composed of a series of optimized steps, and each step is more efficient than those of the initial solution proposed in [1]. We also give a new determinant condition for rectangle determination, which leads to less ambiguity in implementation. The key steps of the proposed solution can be represented with more compact analytic equations due to the intuitive geometric interpretations of the projective reconstruction problem based on CLCs: the center of projection corresponds to the intersection point of the two solution circles of each line camera involved.

Extraction of Geometric and Color Features in the Tobacco-leaf by Computer Vision (컴퓨터 시각에 의한 잎담배의 외형 및 색 특징 추출)

  • Cho, H.K.;Song, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.380-396
    • /
    • 1994
  • A personal computer based color machine vision system with video camera and fluorescent lighting system was used to generate images of stationary tobacco leaves. Image processing algorithms were developed to extract both the geometric and the color features of tobacco leaves. Geometric features include area, perimeter, centroid, roundness and complex ratio. Color calibration scheme was developed to convert measured pixel values to the standard color unit using both statistics and artificial neural network algorithm. Improved back propagation algorithm showed less sum of square errors than multiple linear regression. Color features provide not only quality evaluation quantities but the accurate color measurement. Those quality features would be useful in grading tobacco automatically. This system would also be useful in measuring visual features of other agricultural products.

  • PDF

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 1) Theoretical Principle

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In recent years, multi-camera systems have been recognized as an affordable alternative for the collection of 3D spatial data from physical surfaces. The collected data can be applied for different mapping(e.g., mobile mapping and mapping inaccessible locations)or metrology applications (e.g., industrial, biomedical, and architectural). In order to fully exploit the potential accuracy of these systems and ensure successful manipulation of the involved cameras, a careful system calibration should be performed prior to the data collection procedure. The calibration of a multi-camera system is accomplished when the individual cameras are calibrated and the geometric relationships among the different system components are defined. In this paper, a new single-step approach is introduced for the calibration of a multi-camera system (i.e., individual camera calibration and estimation of the lever-arm and boresight angles among the system components). In this approach, one of the cameras is set as the reference camera and the system mounting parameters are defined relative to that reference camera. The proposed approach is easy to implement and computationally efficient. The major advantage of this method, when compared to available multi-camera system calibration approaches, is the flexibility of being applied for either directly or indirectly geo-referenced multi-camera systems. The feasibility of the proposed approach is verified through experimental results using real data collected by a newly-developed indirectly geo-referenced multi-camera system.