• Title/Summary/Keyword: Geometric calibration

Search Result 180, Processing Time 0.034 seconds

Correction for Scanning Errors of a CCD Camera Scanner (CCD Camera Scanner의 스캐닝 왜곡 보정기법 연구)

  • 안기원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.2
    • /
    • pp.173-180
    • /
    • 1994
  • One can see more and more photograrmmetric applications dealing with the extraction of information from images obtained with CCD (Charge Coupled Device) camera scanners. In order for this information to be useful, the scanning errors of scanners must be known through a calibration. Investigation of this study is given to the detailed procedure of the correction for scanning errors created during the scanning of photographs with CCD camera scanner using the three kinds of high resolution reseal plates prepared. The geometric corrected digital images for scanning errors were generated and the accuracy of the resulting new images for each types of plates were checked comparing its image coordinates with there corresponding ground coordinates for the check points.

  • PDF

A Development of Fuzzy Logic-Based Evaluation Model for Traffic Accident Risk Level (퍼지 이론을 이용한 교통사고 위험수준 평가모형)

  • 변완희;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • The evaluation of risk level or possibility of traffic accidents is a fundamental task in reducing the dangers associated with current transportation system. However, due to the lack of data and basic researches for identifying such factors, evaluations so far have been undertaken by only the experts who can use their judgements well in this regard. Here comes the motivation this thesis to evaluate such risk level more or less in an automatic manner. The purpose of this thesis is to test the fuzzy-logic theory in evaluating the risk level of traffic accidents. In modeling the process of expert's logical inference of risk level determination, only the geometric features have been considered for the simplicity of the modeling. They are the visibility of road surface, horizontal alignment, vertical grade, diverging point, and the location of pedestrain crossing. At the same time, among some inference methods, fuzzy composition inference method has been employed as a back-bone inference mechanism. In calibration, the proposed model used four sites' data. After that, using calibrated model, six sites' risk levels have been identified. The results of the six sites' outcomes were quite similar to those of real world other than some errors caused by the enforcement of the model's output. But it seems that this kind of errors can be overcome in the future if some other factors such as driver characteristics, traffic environment, and traffic control conditions have been considered. Futhermore, the application of site's specific time series data would produce better results.

  • PDF

The Evaluation of Distance Accuracy and The Test Target Manufacturing of A Terrestrial Laser Scanner (TLS용 테스트 타깃의 개발과 거리측정 정확도 검증)

  • Lee, In-Su;Tcha, Dek-Kie;Suh, Ho-Suhng
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • Albeit the use of terrestrial 3D laser scanner (TLS) in the parts of landslide monitoring, cultural heritage documentation, civil engineering, urban engineering, etc. is increasing more and more, there is no international standardization regulation about the accuracy evaluation of the geometric element values, target, instrument calibration and test procedures, etc. Accordingly, this study deals with the manufacturing of TLS performance test target and the evaluation of TLS distance measurement and shows its suitability as the test target.

Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit (단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발)

  • Jo, Yong-Jun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.

A NEW APPROACH OF CAMERA MODELING FOR LINEAR PUSHBROOM IMAGES

  • Jung, Hyung-Sup;Kang, Myung-Ho;Lee, Yong-Woong;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1162-1164
    • /
    • 2003
  • The methods of the geometric reconstruction and sensor calibration of satellite linear pushbroom images are investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbit parameters, longitude of the ascending node(${\omega}$), inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. Time-dependent orbit parameters are expressed by quadratic polynomials. SPOT-5 images have been used for validation tests. The results are that the RMSE acquired from 20 GCPs is 1.763m and the RMSE of 5 checking points 2.470m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image using pushbroom camera.

  • PDF

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

A New Method of Noncontact Measurement for 3D Microtopography in Semiconductor Wafer Implementing a New Optical Probe based on the Precision Defocus Measurement (비초점 정밀 계측 방식에 의한 새로운 광학 프로브를 이용한 반도체 웨이퍼의 삼차원 미소형상 측정 기술)

  • 박희재;안우정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-137
    • /
    • 2000
  • In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.

  • PDF

A study on presence quality and cybersickness in 2D, smartphone, and VR

  • Saeed, Saleh;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2305-2327
    • /
    • 2022
  • Recent improvements in technology have increased the consumption of virtual reality (VR) contents on immersive displays. The VR experience depends on the type of displays as well as the quality of VR contents. However, research on the impacts of VR content quality on VR experience and comparisons among different types of immersive display devices are lacking. In this study, VR contents created with our VR framework, are provided to participants on conventional two-dimensional (2D) immersive displays and VR headset. The geometric alignment of VR contents is improved with the addition of two calibration modes (i.e. preprocessing and straightening). The subjective feelings of presence and cybersickness experienced by participants while consuming VR contents created by our framework and commercial solutions are recorded in the form of questionnaires. The results of this study indicate that the improvements in VR quality lead to a better presence and less cybersickness in both conventional 2D displays and VR headset. Furthermore, the level of presence and cybersickness increases in VR headsets as compared to conventional 2D displays. Finally, the VR content quality improvements lead to a better VR experience for our VR framework as compared to commercial solutions.

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

Development of Chicken Carcass Segmentation Algorithm using Image Processing System (영상처리 시스템을 이용한 닭 도체 부위 분할 알고리즘 개발)

  • Cho, Sung-Ho;Lee, Hyo-Jai;Hwang, Jung-Ho;Choi, Sun;Lee, Hoyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.446-452
    • /
    • 2021
  • As a higher standard for food consumption is required, the consumption of chicken meat that can satisfy the subdivided food preferences is increasing. In March 2003, the quality criteria for chicken carcasses notified by the Livestock Quality Assessment Service suggested quality grades according to fecal contamination and the size and weight of blood and bruises. On the other hand, it is too difficult for human inspection to qualify mass products, which is key to maintaining consistency for grading thousands of chicken carcasses. This paper proposed the computer vision algorithm as a non-destructive inspection, which can identify chicken carcass parts according to the detailed standards. To inspect the chicken carcasses conveyed at high speed, the image calibration was involved in providing robustness to the side effect of external lighting interference. The separation between chicken and background was achieved by a series of image processing, such as binarization based on Expectation Maximization, Erosion, and Labeling. In terms of shape analysis of chicken carcasses, the features are presented to reveal geometric information. After applying the algorithm to 78 chicken carcass samples, the algorithm was effective in segmenting chicken carcass against a background and analyzing its geometric features.