• Title/Summary/Keyword: Geometric Modeling

Search Result 735, Processing Time 0.025 seconds

Estimation of Air Flow Rate in Automotive Ventilated Seat (자동차 통풍 시트의 유량 평가)

  • Lee, Hyun-Hee;Kim, Tae-Kyung;Lee, Kwangju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.34-40
    • /
    • 2016
  • In ventilated seats for cars, air flow is generated by a fan and passed through a foam pad, foam filter, and seat cover. There is a significant loss of air flow in this process, and it is not easy to analyze the amount delivered to the driver. Another difficulty is the geometric complexity of the air flow passage inside the seats. In this paper, the air flow through a foam pad was analyzed. Proper modeling of the bumps in the ventilation mat was found to be important in the analysis. Air flow is lost when it passes through the porous pad foam, which was measured and used to correct the analysis results. The corrected analysis results were in a good agreement with the experimental results. The amount of air flow delivered to a driver was measured using an airflow cone. Only 35.7% of the air flow from the fan was delivered.

An Effective Data Exchange of Curves (곡선의 효율적 자료 교환)

  • 김혁진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.31-40
    • /
    • 1998
  • Recently computer graphics and CAD systems of many kinds have been developed. and this trends will be more increased in the future because the application fields are diverse However, data exchange problems between these systems will be occurred as the system kinds increase. Standards for solving these problems are made by IGES and STEP. etc, Nevertheless, it is unsatisfactory now because data exchange between different systems is not running well with reliability and efficiency. Because vendors implement with different ways, data exchange of the curves and surfaces between different systems which are based in the geometric modeling system, does not satisfy. This paper is a research for curve conversion in the data exchange between different systems. Also this paper analyzed the transferring data which are effectively conversed the curves among the four different types of curves in the less important curve shape environment.

  • PDF

Mesh Simplification using New Approximate Mean Curvatures (새로운 근사 평균 곡률을 이용한 메쉬 단순화)

  • Kwak, Jae-Hee;Lee, Eun-Jeong;Yoo, Kwan-Hee
    • Journal of Korea Game Society
    • /
    • v.2 no.2
    • /
    • pp.28-36
    • /
    • 2002
  • In general, triangular meshes have been used for modeling geometric objects such as virtual game characters. The dense meshes give us considerable advantages in representing complex, highly detailed objects, while they are more expensive for storing, transmitting and rendering the objects. Therefore, several researches have been performed for producing a high quality approximation in place of detailed objects, that is, a simplification of triangular meshes. In this paper, we propose a new measure with respect to edges and vertices, which is called an approximate mean curvature and is used as criteria to simplify an original mesh. An edge mean curvature is computed by considering its neighboring edges, and a vertex mean curvature is defined as an average of its incident edges' mean curvatures. And we apply the proposed measure to simplify the models such as a bunny, dragon and teeth. As a result, we can see that the mean curvatures can be used as good criteria for providing much better approximation of models.

  • PDF

Robust Computation of Polyhedral Minkowski Sum Boundary (다면체간의 강건한 민코스키합 경계면 계산)

  • Kyung, Min-Ho;Sacks, Elisha
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Minkowski sum of two polyedra is an operation to compute the sum of all pairs of points contained in the polyhedra. It has been a very useful tool to solve many geometric problems arising in the areas of robotics, NC machining, solid modeling, and so on. However, very few algorithms have been proposed to compute Minkowski sum of polyhedra, because computing Minkowski sum boundaries is susceptible to roundoff errors. We propose an algorithm to robustly compute the Minkowski sum boundaries by employing the controlled linear perturbation scheme to prevent numerically ambiguous and degenerate cases from occurring. According to our experiments, our algorithm computes the Minkowski sum boundaries with the precision of $10^{-14}$ by perturbing the vertices of the input polyhedra up to $10^{-10}$.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Genetic Algorithm-based Generative Design for Creative Ring Design (독창적 반지 설계를 위한 유전자 알고리즘 기반의 변환생성 디자인)

  • Kim, Ko Uh;Kang, Sol Ji;Jee, Sang Hyeon;Lee, Seung Bok;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • Creativity is crucial in designing and producing attractive accessaries and daily supplies as well as art works. Generative design can be a paradigm to be used to obtain novel ideas or motifs for creative design works. This paper introduces a generative design method which comes up with unique ring models using genetic algorithm. It presents how the genetic algorithm works in terms of candidate solution coding, operators, and fitness evaluation function. The proposed method allows the customers to express their personal preference and later the preference to be reflected in fitness evaluation. In the final stage of the proposed method, several ring models are suggested for customers to choose on their own. The chosen ring models can be put into physical rings with the help of a 3D printer because the models are expressed in 3D geometric structures.

Analysis of Performance of Focused Beamformer Using Water Pulley Model Array (수차 모형 배열을 이용한 표적추정 (Focused) 빔형성기 성능분석)

  • 최주평;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.83-91
    • /
    • 2001
  • This paper proposes the Focused beamforming to estimate the location of target residing near to the observation platform in the underwater environment. The Focused beamforming technique provides the location of target by the coherent summation of a series of incident spherical waveforms considering distinct propagation delay times at the sensor array. But due to the movement of the observation platform and the variation of the underwater environment, the shape of the sensor array is no longer to be linear but it becomes distorted as the platform moves. Thus the Focused beamforming should be peformed regarding to the geometric shape variation at each time. To estimate the target location, the artificial image plane comprised of cells is constructed, and the delays are calculated from each cell where the target could be proximity to sensors for the coherent summation. After the coherent combining, the beam pattern can be obtained through the Focused beamforming on the image plane. Futhermore to compensate the variation of the shape of the sensor array, the paper utilizes the Nth-order polynomial approximation to estimate the shape of the sensor array obeying the water pulley modeling. Simulation results show the performance of the Focused beamforming for different frequency bands of the radiated signal.

  • PDF

Modeling and Simulation of Aircraft Motion for Performance Assessment of Airborne AESA Radar Considering Wind and Vibration (바람과 진동을 고려한 항공기 탑재 AESA 레이다 성능 평가용 운동 모델링 및 시뮬레이션)

  • Lee, Donguk;Im, Jaehan;Lee, Haemin;Jung, Youngkwang;Jeong, Jaehyeon;Shin, Jong-Hwan;Lee, Sungwon;Park, June Hyune;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.903-910
    • /
    • 2020
  • This paper introduces a simulator to assess the impacts of the wind and the airframe vibration on the performance of the Active Electronically Scanned Array (AESA) radar mounted in an aircraft. The AESA radar is mounted on the nose cone of an aircraft, and vibration occurs due to the drag force. This vibration affects the behavior of the AESA radar and can cause phase errors in signal. The simulator adopts the geometric model for nose cone, the mathematical models on the rigid-body dynamics of the aircraft, the average/turbulent winds, and the mode/ambient vibrations to compute the position and the attitude of the radar accurately. Numerical studies reflecting a set of test scenarios were conducted to demonstrate the effectiveness of the developed simulator.

An efficient multipath propagation prediction using improved vector representation (효율적 다중경로 전파 예측을 위한 Ray-Tracing의 개선된 벡터 표현법)

  • 이상호;강선미;고한석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1974-1984
    • /
    • 1999
  • In this paper, we introduce a highly efficient data structure that effectively captures the multipath phenomenon needed for accurate propagation modeling and fast propagation prediction. The proposed object representation procedure is called 'circular representation (CR)' of microwave masking objects such as buildings, to improve over the conventional vector representation (VR) form in fast ray tracing. The proposed CR encapsulates a building with a circle represented by a center point and radius. In this configuration, the CR essentially functions as the basic building block for higher geometric structures, enhancing the efficiency more than when VR is used alone. The simulation results indicate that the proposed CR scheme reduces the computational load proportionally to the number of potential scattering objects while its hierarchical structure achieves about 50% of computational load reduction in the hierarchical octree structure.

  • PDF