• Title/Summary/Keyword: Geometric Data

Search Result 1,616, Processing Time 0.026 seconds

Rapid Prototyping from Reverse Engineered Geometric Data (리버스 엔지니어링으로 생성된 데이터를 이용한 쾌속 조형 기술 연구)

  • Woo, Hyuck-Je;Lee, Kwan-Heng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.95-107
    • /
    • 1999
  • The design models of a new product in general are created using clay models or wooden mock-ups. The reverse engineering(RE) technology enables us to quickly create the CAD model of the new product by capturing the surface of the model using laser digitizers or coordinate measuring machines. Rapid prototyping (RP) is another technology that can reduce the product development time by fabricating the physical prototype of a part using a layered manufacturing technique. In reverse engineering process, however, the digitizer generates an enormous amount of point data, and it is time consuming and also inefficient to create surfaces out of these data. In addition, the surfacing operation takes a great deal of time and skill and becomes a bottleneck. In rapid prototyping, a faceted model called STL file has been the industry standard for providing the CAD input to RP machines. It approximates the CAD model of a part using many planar triangular patches and has drawbacks. A novel procedure that overcomes these problems and integrates RE with RP is proposed. Algorithms that drastically reduce the point clouds data have been developed. These methods will facilitate the use of reverse engineered geometric data for rapid prototyping, and thereby will contribute in reducing the product development time.

  • PDF

3D Model Compression For Collaborative Design

  • Liu, Jun;Wang, Qifu;Huang, Zhengdong;Chen, Liping;Liu, Yunhua
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The compression of CAD models is a key technology for realizing Internet-based collaborative product development because big model sizes often prohibit us to achieve a rapid product information transmission. Although there exist some algorithms for compressing discrete CAD models, original precise CAD models are focused on in this paper. Here, the characteristics of hierarchical structures in CAD models and the distribution of their redundant data are exploited for developing a novel data encoding method. In the method, different encoding rules are applied to different types of data. Geometric data is a major concern for reducing model sizes. For geometric data, the control points of B-spline curves and surfaces are compressed with the second-order predictions in a local coordinate system. Based on analysis to the distortion induced by quantization, an efficient method for computation of the distortion is provided. The results indicate that the data size of CAD models can be decreased efficiently after compressed with the proposed method.

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Terrain Rendering Using Vertex Cohesion Map (정점 응집맵을 이용한 지형 렌더링)

  • Jo, In-Woo;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.11 no.1
    • /
    • pp.131-138
    • /
    • 2011
  • Recently in terrain rendeing, most researches introduce mipmap-based out-of-core methods for handling large sized DEM data which does not fit in main memory of general computer. However, mipmap-based LOD(level-of-detail) methods occur geometric errors which appear in data simplifying the higher LOD level. These geometric errors cause geometric popping effects where LOD level changes when viewpoint moves. In this paper, we propose vertex cohesion map for reducing geometric error. In preprocessing step, we generate vertex cohesion map, which is a texture that stores the vectors. By these vectors, each vertex will be cohered into the position in which the difference of gradient value is bigger than others. Therefore in terrain rendering, using vertex cohesion map can dramatically reduce the geometry popping effects rather than using mipmap.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

Comparison of Composite Methods of Satellite Chlorophyll-a Concentration Data in the East Sea

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Min-Sun;Kang, Chang-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.635-651
    • /
    • 2012
  • To produce a level-3 monthly composite image from daily level-2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a concentration data set in the East Sea, we applied four average methods such as the simple average method, the geometric mean method, the maximum likelihood average method, and the weighted averaging method. Prior to performing each averaging method, we classified all pixels into normal pixels and abnormal speckles with anomalously high chlorophyll-a concentrations to eliminate speckles from the following procedure for composite methods. As a result, all composite maps did not contain the erratic effect of speckles. The geometric mean method tended to underestimate chlorophyll-a concentration values all the time as compared with other methods. The weighted averaging method was quite similar to the simple average method, however, it had a tendency to be overestimated at high-value range of chlorophyll-a concentration. Maximum likelihood method was almost similar to the simple average method by demonstrating small variance and high correlation (r=0.9962) of the differences between the two. However, it still had the disadvantage that it was very sensitive in the presence of speckles within a bin. The geometric mean was most significantly deviated from the remaining methods regardless of the magnitude of chlorophyll-a concentration values. Its bias error tended to be large when the standard deviation within a bin increased with less uniformity. It was more biased when data uniformity became small. All the methods exhibited large errors as chlorophyll-a concentration values dominantly scatter in terms of time and space. This study emphasizes the importance of the speckle removal process and proper selection of average methods to reduce composite errors for diverse scientific applications of satellite-derived chlorophyll-a concentration data.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

Coregistration of QuickBird Imagery and Digital Map Using a Modified ICP Algorithm (수정된 ICP알고리즘을 이용한 수치지도와 QuickBird 영상의 보정)

  • Han, Dong-Yeob;Eo, Yang-Dam;Kim, Yong-Hyun;Lee, Kwang-Jae;Kim, Youn-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • For geometric correction of high-resolution images, the authors matched corresponding objects between a large-scale digital map and a QuickBird image to obtain the coefficients of the first order polynomial. Proximity corrections were performed, using the Boolean operation, to perform automated matching accurately. The modified iterative closest point (ICP) algorithm was used between the point data of the surface linear objects and the point data of the edge objects of the image to determine accurate transformation coefficients. As a result of the automated geometric correction for the study site, an accuracy of 1.207 root mean square error (RMSE) per pixel was obtained.

A Study on the Data Extraction and Formalization for the Generation of Structural Analysis Model from Ship Design Data (선체 구조설계로부터 구조해석 모델 생성에 필요한 데이타의 추출과 정형화에 관한 연구)

  • Jae-Hwan Lee;Yong-Dae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.90-99
    • /
    • 1993
  • As the finite element method has become a considerable and effective design tool in ship structural analysis, modeling of three dimensional finite element mesh is more necessary than before. However, the unique style and complexity of a ship usually make the modeling be hard and costly. Although most pre-processor of FEM software and geometric modeler provides modeling function, the capability is quite limited for complicated structure. In order to perform FEM modeling quickly, it is necessary to extract, rearrange, and formalize data from ship design database for partially automatic mesh generation. In this paper, the process of designing relational data tables from design data is shown as a part of analysis automation with the application of engineering database concept.

  • PDF

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.