• Title/Summary/Keyword: Geomagnetic sensor

Search Result 63, Processing Time 0.02 seconds

A Study on Task Planning and Design of Modular Quadruped Robot with Docking Capability (결합 가능한 모듈형 4족 로봇의 설계 및 작업 계획에 대한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • There are many researches to develop robots that improve its mobility and task planning to adapt in various uneven environments. In this paper, we propose the design method and task planning of quadruped robot which can have top-bottom docking structure. The proposed quadruped robot is designed to adjust leg length using linear actuators and perform top-bottom docking and undocking using octagonal cone shaped docking module. Also, to stable walking and information gathering in the various environments, a geomagnetic sensor, PSD sensor, LRF sensor and camera. We propose an obstacle avoidance method and the topbottom docking algorithm of the two quadruped robots using linear actuator. The robot can overcome obstacles using adjusting leg length and activate the top-bottom docking function. The top-bottom docking robots of two quadruped robot can walk 4 legged walking and 6 legged walking, and use 4 arms or 2 arms the upper. We verified that the docking robots can carry objects using 4 leg of the upper robot.

Real time indoor positioning system using IEEE 802.15.4a and sensors (IEEE 802.15.4a와 센서를 이용한 실시간 실내위치인식 시스템)

  • Cho, Hyun-Jong;Hwang, Kwang-Il;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.850-856
    • /
    • 2012
  • Bilateration using two fixed nodes has been used in the field of the real time indoor location system in the narrow space such as building or ship passage. However, as the distance between the fixed nodes increases or any obstructions exist in their zone, it is difficult to detect the location of mobile node(user) due to the degradation of its reception ratio. In order to compensate for these problems, this paper presents, based on IEEE 802.15.4a chirp signal, a new real time indoor location system using stride measurement algorithm which can calculate the location through sensors attached to user. The proposed system consists of an ultrasonic sensor to measure the leg length, a geomagnetic sensor to recognize the user's orientation, and an inertial sensor to obtain the angle between the legs. The experimental results are shown that the proposed system has twice or more accurate output compared with conventional indoor location method in the section which is partially out of communication reachability.

An Implementation of Positioning System using Multiple Data in Smart Phone (스마트폰에서 다중데이터를 이용한 측위시스템 구현)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2195-2202
    • /
    • 2011
  • Recently, navigation system is used to inform users of vehicle location and driving direction, moving distance and so on. This navigation uses GPS sensor for current location determination. The GPS sensor will determinate current coordinates by using triangulation algorithm. This characteristic bring about that the GPS signal is not available in the shadow region such as tunnel and urban canyon. Moreover, Even though the signal is available, inherent positional error rate of the GPS often results in the dislocation of vehicle. To solve, these problems, a new positioning system is proposed in the paper. The System utilizes geomagnetic sensors of smartphone, speed information of CAN of vehicle though bluetooth and WiFi APs for GPS shadow area. The experimental test shadows that the proposed system using multiple data is able to determine the position of vehicle in GPS shadow areas.

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

Development of Real-time Precision Spraying System Using Machine Vision and DGPS (기계시각과 DGPS를 이용한 실시간 정밀방제 시스템 개발)

  • 조성인;정재연;김유용;남기찬;이중용
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • Several researches for site-specific weed control have tried to increase accuracy of weed detection with machine vision technique. However, there is a problem which needs substantial time to perform site-specific spraying. Therefore, new technology for real-time precision spraying system is needed. This research was executed to develope the new technology to estimate weed density and size in real time, and to conduct a real-time site-specific spraying. It would effectively reduce herbicide amounts applied for a crop field. The real-time precision spraying system consisted of a Differential Global Positioning System (DGPS) with an error of 2 cm, a machine vision system, a geomagnetic sensor for correction of view point of CCD camera and an automatic sprayer with separately controlled nozzle. The weed density was calculated with comparison between position information and a pre-designed electronic map. The position information was obtained in real time using the DGPS and the machine vision. The electronic map contained a position database of crops automatically constructed when seeding. The developed system was tested on an experimental field of Seoul National University. Success rate of the spraying was about 61%.

A study on indoor navigation system using localization based on wireless communication (무선통신기반 위치인식을 이용한 실내 내비게이션 시스템에 관한 연구)

  • Kim, Jung-Ha;Lee, Sung-Geun;Kim, Jong-Su;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.114-120
    • /
    • 2013
  • Recently, navigation systems based on wireless communication have been applied to the internal structures such as building or ship. If a stable azimuth information is obtained, these systems can effectively guide the direction of the user's progress through the information and then can improve the performance of guidance. Since conventional method which has acquired an azimuth information using geomagnetic and acceleration sensor(azimuth sensor hereafter) is sensitive to the effects of the magnetic field, it has unstable error range according to the surrounding environment. In order to improve these problems, this paper presents a new relative azimuth estimation algorithm using the displacement of a mobile node and its rotation angle based on Wireless communication. For the performance assessment of the proposed algorithm, experiments using rotating arm are performed and the results are confirmed that the proposed system can estimate the relative azimuth without using additional sensors.

FIDO Platform of Passwordless Users based on Multiple Biometrics for Secondary Authentication (암호 없는 사용자의 2차 인증용 복합생체 기반의 FIDO 플랫폼)

  • Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • In this paper, a zero trust-based complex biometric authentication was proposed in a passwordless environment. The linkage of FIDO 2.0 (Fast IDENTITY Online) transaction authentication platforms was designed in conjunction with metaverse. In particular, it was applied with the location information of a smart terminal according to a geomagnetic sensor, an accelerator sensor, and biometric information for multi-factor authentication(MFA). At this time, a FIDO transaction authentication platform was presented for adaptive complex authentication with user's environment through complex authentication with secondary authentication based on situational awareness such as illuminance and temperature/humidity. As a result, it is possible to authenticate secondary users based on zero trust with behavior patterns such as fingerprint recognition, iris recognition, face recognition, and voice according to the environment. In addition, it is intended to check the linkage result of the FIDO platform for complex integrated authentication and improve the authentication accuracy of the linkage platform for transaction authentication using FIDO2.0.

Ground-based Observations of the Polar Region Space Environment at the Jang Bogo Station, Antarctica

  • Kwon, Hyuck-Jin;Lee, Changsup;Jee, Geonhwa;Ham, Young-Bae;Kim, Jeong-Han;Kim, Yong Ha;Kim, Khan-Hyuk;Wu, Qian;Bullett, Terence;Oh, Suyeon;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica ($74.62^{\circ}S$ $164.22^{\circ}E$) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Sohn, Jongdae;Lee, Jaejin;Jo, Gyeongbok;Lee, Jongkil;Hwang, Junga;Park, Jaeheung;Kwak, Young-Sil;Park, Won-Kee;Nam, Uk-Won;Dokgo, Kyunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.