• Title/Summary/Keyword: Geological structures

Search Result 380, Processing Time 0.021 seconds

Failure Characteristics of Cut Slopes in Sedimentary Rock of Kyongsang Basin (경상분지 퇴적암 절취사면의 붕괴특성)

  • 유병옥;황영철;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.339-346
    • /
    • 1999
  • The stability of rock slope is considered to have a deep relation with types of rocks because types of rocks have their own typical weathering profiles, geological structures and characteristics of failures. Therefore it is essential for the evaluation of rock slope stability to analyze geological and engineering characteristics in rock mass. The data which collected from investigated slopes in sedimentary rock of Kyengsang Basin along highways were analyzed. Primary factors affecting slope stability in rock mass are: dips and strikes of slopes and discontinuities, shear strength of discontinuities, slope geometry and geological structures etc.

  • PDF

New reliability framework for assessment of existing concrete bridge structures

  • Mahdi Ben Ftima;Bruno Massicotte;David Conciatori
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.399-409
    • /
    • 2024
  • Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A "shifted" reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

Geological and Geophysical Surveys for Determining Causes of Rack Slides (암반사면 사태의 원인규명을 위한 지질조사 및 전기비저항 탐사)

  • 황학수;이태섭;기원서;박종오;문창규;최정환
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.295-301
    • /
    • 2001
  • Geological and geophysical surveys were performed to examined the cause of the rock-mass slide occurred at the opening site of the Wanglim tunnel of the Seoul-Pusan High Speed Railway. The results of geophygical survey and geometrical analysis for the geological structures indicate that the rock-mass slide was triggered by the heavy rainfall which increases the groundwater level and results in high pore pressure in the N60$^{\circ}$ E-trending major fractured zone of the slope, and that the foliation dipping toward the vertical open face of the slope acted as a main sliding plane during movement.

  • PDF

Present Status and Comparative Study on the Geological Natural Monuments of South and North Koreas (남·북한 지질분야 천연기념물의 현황과 비교)

  • Kim, Dong Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.20-39
    • /
    • 2009
  • Abstract This research is a comparative study on the geological natural monuments of South and North Koreas. The classification system on natural monuments between South Korea and North Korea is similar, but North Korea's designations are relatively well-balanced. The geology field of South Korea was composed of rocks, caves, fossils and general geology, whereas that of North Korea was subdivided into rocks, fossils, strata, mineral springs, hot springs, geography, waterfalls, lakes, caves and pools. Unlike South Korea, North Korea designates and preserves geological structures such as fold and fault, and representative outcrops of mine. It is suggested that South Korea has to establish natural monument management policies for preserving geological structures and outstanding outcrops of mine. The 47-year period of preserving natural monuments in South Korea was divided into the stages I (1962~1980), II (1981~1995) and III (1996~2008). The designated numbers of geological natural monuments in the stage I, II and III average 1.1, 0.1 and 2.6, respectively. The number of geological natural monuments in South Korea is highest in Jeju province, whereas that in North Korea is highest in Gangwon province. This implies that natural monuments have been well protected especially in the locality of slow urbanization.

Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed (실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층)

  • Yu, Huieun;Shin, Jehyun;Kim, Bitnarae;Cho, Ahyun;Lee, Gang Hoon;Pyun, Sukjoon;Hwang, Seho;Yu, Young-Chul;Cho, Ho-Young;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.19-33
    • /
    • 2022
  • When subsurface is polluted, contaminants tend to migrate through groundwater flow path. The groundwater flow path is highly dependent upon underground geological structures in the contaminated area. Geophysical survey is an useful tool to identify subsurface geological structure. In addition, geophysical logging in a borehole precisely provides detailed information about geological characteristics in vicinity of the borehole, including fractures, lithology, and groundwater level. In this work, surface seismic refraction and electrical resistivity surveys were conducted in a test site located in Namyangju city, South Korea, along with well logging tests in five boreholes installed in the site. Geophysical data and well logging data were collected and processed to construct an 3D geological map in the site.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Failure Types in Rock Slopes According to Geological Characteristics (지질특성에 따른 암반사면 붕괴유형연구)

  • 정형식;유병옥
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.37-50
    • /
    • 1996
  • In this study, we collected data through the investigation of rock slopes of highway. By analyzing the collected data, the main factors of rock slope failure were studied. We studied on the failure types and scales according to rock types and geological structures in many rock slopes of highway. As a result, it was shown that many failed slopes were distributed in the areas of Cretaceous sedimentary rocks of south-eastern part in the Korean Peninsula and the Gneiss Complex in both Kyonggi-Do and Kangwon-Do. According to rock types, the following slope failure types were shown : that igneous rocks had the types of rock fall, plane failure, soil erosion and circular failure but had low failure frequency, and sedimentary rocks had predominantly the type of plane failure. Metamorphic rock showed the types of circular failure, wedge failure and plane failure due to poor rock qualities . According to geological structures, the following slope failure types were shown slope failure in igneous rocks was caused by joints, and in sedimentary rocks by bedding plane, and in metamorphic rocks by faults and poor rock qualities.

  • PDF

Mapping Submarine Bathymetry and Geological Structure Using the Lineament Analysis Method

  • Kwon, O-Il;Baek, Yong;Kim, Jinhwan
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The Honam-Jeju, Korea-Japan, and Korea-China subsea tunnel construction projects have drawn significant attention since the early 2000s. These subsea tunnels are much deeper than most existing natural shallow sea tunnels linking coastal areas. Thus, the need for developing new technologies for the site selection and construction of deep subsea tunnels has recently emerged, with the launch of a research project titled "Development of Key Subsea Tunnelling Technology" in 2013. A component of this research, an analysis of deep subsea geological structure, is currently underway. A ground investigation, such as a borehole or geophysical investigation, is generally carried out for tunnel design. However, when investigating a potential site for a deep subsea tunnel, borehole drilling requires equipment at the scale of offshore oil drilling. The huge cost of such an undertaking has raised the urgent need for methods to indirectly assess the local geological structure as much as possible to limit the need for repeated borehole investigations. This study introduces an indirect approach for assessing the geological structure of the seafloor through a submarine bathymetry analysis. The ultimate goal here is to develop an automated approach to the analysis of submarine geological structures, which may prove useful in the selection of future deep subsea tunnel sites.