• Title/Summary/Keyword: Geological age

Search Result 197, Processing Time 0.025 seconds

Genomic DNA Extracted from Ancient Antarctic Glacier Ice for Molecular Analyses on the Indigenous Microbial Communities

  • Lee, Sang-Hoon;Bidle, Kay;Falkowski, Paul;Marchant, David
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.205-214
    • /
    • 2005
  • From ancient Antarctic glacier ice, we extracted total genomic DNA that was suitable for prokaryotic 16S rDNA gene cloning and sequencing, and bacterial artificial chromosome (BAC) library and end-sequencing. The ice samples were from the Dry Valley region. Age dating by $^{40}Ar/^{39}Ar$ analysis on the volcanic ashes deposited in situ indicated the ice samples are minimum 100,000-300,000 yr (sample DLE) and 8 million years (sample EME) old. Further assay proved the ice survived freeze-thaw cycles or other re-working processes. EME, which was from a small lobe of the basal Taylor glacier, is the oldest known ice on Earth. Microorganisms, preserved frozen in glacier ice and isolated from the rest of the world over a geological time scale, can provide valuable data or insight for the diversity, distribution, survival strategy, and evolutionary relationships to the extant relatives. From the 16S gene cloning study, we detected no PCR amplicons with Archaea-specific primers, however we found many phylotypes belonging to Bacteria divisions, such as Actinobacteria, Acidobacteria, Proteobacteria $({\alpha},\;{\beta},\;and\;{\gamma})$, Firmicutes, and Cytophaga-Flavobacterium-Bacteroid$. BAC cloning and sequencing revealed protein codings highly identical to phenylacetic acid degradation protein paaA, chromosome segregation ATPases, or cold shock protein B of present day bacteria. Throughput sequencing of the BAC clones is underway. Viable and culturable cells were recovered from the DLE sample, and characterized by their 16S rDNA sequences. Further investigation on the survivorship and functional genes from the past should help unveil the evolution of life on Earth, or elsewhere, if any.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

Palaeomagnetism of the Taedong Supergroup in the Kimpo Area (김포(金浦))지역 대동누층군(大同累層群)에 대한 고자적(古磁的) 연구)

  • Kim, In-Soo;Min, Kyung Duck;Lee, Mi Yeong;Kang, Hee-Cheol;Chun, Hee Young
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.193-206
    • /
    • 1993
  • A total of 111 independently oriented core samples were drilled at 12 sites in fue Kimpo area ($37.70^{\circ}N$, $126.55^{\circ}E$) of the Taedong Supergroup. The Taedong strata are composed of sandstone, conglomeratic sandstone, shale and thin coal seams. The age of the strata is known to be Late Triassic-Early Jurassic according to freshwater Esfuerites and plant fossil (Dictyophyllum-Clathropteris flora) contents. Through AF and thermal demagnetization, an area-mean ChRM direction of $D=48.3^{\circ}\;I=40.3^{\circ}\;{\alpha}_{95}=7.9^{\circ}\;k=59.5$, n=7 was obtained. It passed fold and reversal test in the formation-mean level. Fold test was not significant in the area-mean level. The palaeomagnetic north pole calculated from the area-mean lies at $46.3^{\circ}N$, $222.0^{\circ}E$ with dp=5.7, $dm=9.5^{\circ}$. This pole position is very similar to those of the South China Block (SCB) in Triassic times. Palaeolatitude of the Kimpo area in the Taedong times was $23.0^{\circ}N$, again very similar to the palaeolatitude of the South China Block in the Late Triassic. This low latitude of the study area at the time of deposition explains the tropical-subtropical nature of fossil contents of the Taedong Supergroup.

  • PDF

A Study on the Genesis of Eonyang Amethyst Deposits (언양(彦陽) 자수정 광상(鑛床)의 성인(成因)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • The Eonyang amethyst deposits are composed of vug quartz emplaced in the Eonyang granites of Mesozoic Cretaceous age. The Eonyang granites are composed of biotite granite, porphyritic biotite granite, aplite and miarolitic granite. The petrochemical data of the Eonyang granites show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. The vug quartz show the characteristic growth zoning (white quartz-smoky quartz-amethyst) from wall side. Generally fluid inclusions in the vug quartz can be divided into four main types based on compositions (I-type: gas inclusion, II-type: liquid inclusion, III-type: polyphase inclusion, IV-type: liquid $CO_2$-bearing inclusion). Solid phase of polyphase inclusions are halite(NaCl), sylvite(KCl), hematite ($Fe_2O_3$) and unknown anisotropic solid. Homogenization temperatures inferred from the fluid inclusion study ranges from $440^{\circ}C$ to $485^{\circ}C$ in white quartz, from $227^{\circ}C$ to $384^{\circ}C$ in smoky quartz, from $133^{\circ}C$ to $186^{\circ}C$ in amethyst, respectively. Salinities of fluid inclusions in each mineralization stages ranges from 40 wt.% to 58 wt.% in white and smoky quartz, from 1.0 wt.% to 8.7 wt.% in amethyst respectively. A consideration of the pressure regime during vug quartz deposition based on the boiling evidence suggests lithostatic pressure of less than 72 bars. This range of pressure indicate that vug quartz lay at depth of 750 m below the surface at the during mineralization.

  • PDF

Development of Forest Ecosystem Assessment Technique of Environmental Impact Assessment(II) : Nature Evaluation of Vegetation (환경영향평가중 삼림생태계 평가기법개발(II) : 녹지의 자연성평가)

  • Choi, Song-Hyun;Lee, Kyong-Jae
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.2
    • /
    • pp.33-47
    • /
    • 1996
  • To select the criteria, literature review was made in the quantitative case of conservation biology, foreign country's EIA and domestic ecology. Among them, a few factors was extracted. To applicate the criteria to domestic forest ecosystem, expert opinion survey was executed to the ecologist. The results were summarized as follows; 1. Classification of sites was made of land use system which is related to forest ecosystem or forest conservation. Sites are divided into 3 categories which are nature preservation area, seminature preservation area and urbanized area. Evaluation criteria is consisted of rarity and naturalness. 2. Each area had different criteria composition according to the site characteristics. Criteria of nature preservation area is rarity in the broad sense (distribution pattern of vegetation), vegetation size, successional stage and depth of organic matters. Those of seminature preservation area are rarity in the broad sense (distribution area of vegetation), vegetation size, successional stage, diameter at breath height and depth of organic matters. And those of urbanized area are vegetation distribution in area, successional stage, age of forest and diameter of breath height. The basic data of criterion was gathered by field survey. 3. Evaluation index and total naturalness index was obtained by adding the each criterion. It is made up of two categories-rarity and naturalness. TNi is divided into 3 grades. Grade I is more than 70% for TNi, grade IT is 50~70%, and grade III is below 50%. According to the each grade, permitted action and facilities were suggested.. This research just focuses on the evaluation of vegetation quality and the assessment results do not directly judge conservation or development. To make better evaluation criteria, various fields of forest ecosystem-geological or physical nature environment and fauna ecosystem etc. -will be added wholly to this research.

  • PDF

Marine Ecosystem on Dokdo and Ullungdo Islands

  • Kim, Ki-Tai
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.245-251
    • /
    • 2001
  • Dokdo is a volcanic island, and its formative geological age took place at the end of the Pliocene Epoch. Dokdo is located at 131。 52′33" East longitude, and 37$^{\circ}$ 14′18" North latitude, and is consituted of 87 islands. The total area of Dokdo is 0.186 $\textrm{km}^2$ and the length of its coastline is 4 km. Ookdo is a treasury of fish resources where many varieties of fish including squid and Alaska pollack live in abundance of greatest importance. Dokdo is a forward fishery base. Ullung island is located at 37$^{\circ}$ 27′~37$^{\circ}$ 33′North latitude and 130$^{\circ}$ 47′~130$^{\circ}$ 56′East longitude. The area of Ullung is 72.92 $\textrm{km}^2$ and the length of its seashore is 44.21 $\textrm{km}^2$. The total marine product of Ullungdo(1995) is 9,066 tons (M/T). The largest is squid, 8,900 tons. For the sea area of the depths near the Ullungdo, coast, that of 50m or less is 2,477 ha, and that of 50- 100m is 1,471ha. This fact tells us that there is no extensive area of a very shallow sea, and that it is directly connected to the deep sea. Ullungdo is a treasury of marine bioresources with rich and varied fishes including squid and Alaska Pollack and many others. Presently there is a sovereignty dispute over Dokdo between Korea and Japan. Since A.D.512, Dokdo has been a part of territory of Korea. Dokdo is a part of Kyungsang-Bukdo, Ullung-gun, Ullung-up, Do-dong in the Korean administrative district division system. Japan strenuously claims sovereignty for significant economic reasons, including fishery rights, and has adhered to a contradictory position that "Dokdo is Japanese land" since Japan incorporated Dokdo into Japanese territory in 1905.ritory in 1905.

  • PDF

Basic Research of the Paleo-Environmental Change and Possibility of Ancient Port Location Through Geomorphological Survey and Sediment Analysisin Hwaseong City (화성 당성 유적 일대의 지형 조사 및 퇴적물 분석을 통한 고환경 변화 및 고대 포구 입지 가능성 기초 연구)

  • Han, Min;Yang, Dong-Yoon;Lim, Jaesoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.27-41
    • /
    • 2017
  • In this study, geomorphological and geological research has been carried out to estimate the possibility of ancient port location near Hwaseong Dangseong. Geomorphological characteristics around Eunsupo were analyzed through comparison of past and present topographic maps and field survey. Grain size, age dating, and geochemical analysis on surface sediments and borehole sediments were performed. Through the geomorphological characteristics analysis, it was interpreted that Eunsupo area was submerged in seawater especially at high tide in the past, and that ships could approach to the inside of the area through the tidal channel which were developed in the area. It is also assumed that ships were anchored at a low elevation point in the area. The paleo-environmental change in the area was analyzed based on the classification of sedimentary environment using grain size distribution of surface and borehole sediments and geochemical analysis. It was confirmed that the geomorphological interpretation for the possibility of ancient port location coincided well with the paleo-environmental change interpreted through sediment analysis. This study is a basic study for estimating ancient port location, and it is expected that more accurate paleo-environmental changes will be restored through detailed geomorphological survey and additional borehole analysis in the future research.

A Review on the Quality Control of Marine Fish Data (해양어류 자료의 정도관리에 대한 고찰)

  • LEE, HWAHYUN;SOHN, DONGWHA;KIM, SUAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.277-289
    • /
    • 2021
  • Among various data types obtained from the ocean, the quality controls for abiotic data collected from chemical, physical, and geological field surveys haves already been partially established. Due to the difficulties in standardization of the data collections and basic analyses, however, the quality controls of biotic data are in its early stage. For marine fish, the necessity of quality control is more demanded due to the wide range of data usage, but there are currently no consistent quality control guidelines because of the diversity and scope of data types derived from species-specific and age-specific information throughout various habitats. In this paper, we provide examples of marine fish data utilization and also show methods of the marine fish data collection, limitations of the data collection methods, and suggestions for improving the marine fish data quality. We hope this paper will help to establish the direction of quality control for marine fish data from both fishery-dependent and fishery-independent surveys in Korea in the near future.

Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 북부 회장암복합체와 그 주변지역의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 2012
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Hadong northern anorthosite complex (HNAC) and the Jirisan metamorphic rock complex (JMRC) and the Mesozoic granitoids which intrude them. Its tectonic frame is built into NS trend, unlike the general NE-trending tectonic frame of Korean Peninsula. This paper researched the structural characteristics at each deformation phase to clarify the geological structures associated with the NS-trending tectonic frame which was built in the HNAC and JMRC. The result indicates that the geological structures of this area were formed at least through three phases of deformation. (1) The $D_1$ deformation formed the $F_1$ sheath or "A"-type folds in the HNAC and JMRC, and the $S_{0-1}$ composite foliation and the $S_1$ foliation and the $D_1$ ductile shear zone which are (sub)parallel to the axial plane of $F_1$ fold, and the $L_1$ stretching lineation which is parallel to the $F_1$ fold axis owing to the large-scale top-to-the SE shearing on the $S_0$ foliation. (2) The $D_2$ deformation (re)folded the $D_1$ structural elements under the EW-trending tectonic compression environment, and formed the NS-trending $F_2$ open, tight, isoclinal, intrafolial folds with the $S_{0-1-2}$ composite foliation and the $S_2$ foliation and the $D_2$ ductile shear zone with S-C-C' structure and the $L_2$ stretching lineation which is (sub)parallel to the axial plane of $F_2$ fold. The extensive $D_2$ ductile shear zone (Hadong shear zone) of NS trend was persistently developed along the eastern boundary of HNAC and JMRC which would be to the limb of $F_2$ fold on a geological map scale. The Hadong shear zone is no less than 1.4 km width, and was formed in the mylonitization process which produced the mylonitic structure and the stretching lineation with the reduction of grain size during the $F_2$ passive folding. (3) The $D_3$ deformation formed the EW-trending $F_3$ kink or open fold under the NS-trending tectonic compression environment and partially rearranged the NS-trending pre-$D_3$ structural elements into (E)NE or (W)NW direction. The regional trend of $D_1$ tectonic frame before the $D_2$ deformation would be NE-SW unlike the present, and the NS-trending tectonic frame in the HNAC and JMRC like the present was formed by the rearrangement of the $D_1$ tectonic frame owing to the $F_2$ active and passive folding. Based on the main intrusion age of (N)NE-trending basic dyke in the study area, these three deformation events are interpreted to have occurred before the Late Paleozoic.

(U-Th)/He Dating: Principles and Applications ((U-Th)/He 연령측정법의 원리와 응용)

  • Min, Kyoung-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.239-247
    • /
    • 2014
  • The (U-Th)/He dating utilizes the production of alpha particles ($^4He$ atoms) during natural radioactive decays of $^{238}U$, $^{235}U$ and $^{232}Th$. (U-Th)/He age can be determined from the abundances of the parent nuclides $^{238}U$, $^{235}U$ and $^{232}Th$ and the radiogenic $^4He$. Because helium is one of the noble gases (non-reactive) with a relatively small radius, it diffuses rapidly in many geological materials, even at low temperatures. Therefore, ingrowth of $^4He$ during radioactive decay competes with diffusive loss at elevated temperatures during the geologic time scale, determining the amount of $^4He$ existing today in natural samples. For example, He diffusion in apatite is known to be very rapid compared to that in most other minerals, causing a significant diffusive loss at ${\sim}80^{\circ}C$ or higher. At ${\sim}40^{\circ}C$, He diffusion in apatite becomes slow enough to preserve most $^4He$ in the sample. Thus, an apatite's (U-Th)/He age represents the timing when the sample passed through the temperature range of $80-40^{\circ}C$. The crustal depth corresponding to this temperature range is called a "partial retention zone." Normal closure temperatures for a typical grain size and cooling rate are ${\sim}60-70^{\circ}C$ for apatite and ${\sim}200^{\circ}C$ for zircon and titanite. Because the apatite He closure temperature is lower than that of most other thermochronometers, it can provide critical constraints on relatively recent or shallow-crustal exhumation histories.