• Title/Summary/Keyword: Geological Classification

Search Result 148, Processing Time 0.025 seconds

Prediction of Landslide around Stone Relics of Jinjeon-saji Area (진전사지 석조문화재 주변의 산사태예측)

  • Kim, Kyeong-Su;Lee, Choon-Oh;Song, Young-Suk;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1378-1385
    • /
    • 2008
  • The probability of landslide hazards was predicted to natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analysis results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated, and then the landslides prediction map was made up by use of prediction model considering the effect factors. The susceptibility of stone relics induced by landslides was investigated as the grading classification of occurrence probability using the landslides prediction map. In the landslides prediction map, the high probability area of landslides over 70% of occurrence probability was 3,489m3, which was 10.1% of total prediction area. If landslides are occurred at the high elevation area, the three stories stone pagoda of Jinjeon-saji (National treasure No.122) and the stone lantern of Jinjeon-saji (Treasure No.439) will be collapsed by debris flow.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Establishing A Database for the Management and Utilization of Geological Research Data: Focusing on the Classification of Rocks and Minerals and 3D Models (지질 연구 자료의 관리와 활용을 위한 데이터베이스 구축: 암석, 광물의 분류와 3D 모델을 중심으로)

  • Ko, Bokyun;Lee, Chang-Wook;Park, Sungjae;Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • A great number of geological research data have been produced by individually conducted researchers and then personally stored in domestic universities and research institutes. However, it is difficult to share data with other researchers owing to low and limited accessibility. The purpose of this study is to systematically establish metadata for inaccessible data, to manage them collectively and to provide opportunities for utilizing the data to those who require efficient research methods. Approximately 1,000 geological specimens (900 rocks and fossils, 100 thin sections) were gathered, along with their metadata such as high-resolution photographs, classification, name, owner, address, and geographical coordinates of the sample site, to establish their features. Additionally, 3D modeling data for 100 rocks and fossils were generated. On the basis of this study, it is possible for researchers to access and share crucial geological data that have a high potential to be lost and have been neglected in restricted spaces; by avoiding the wasted time, energy, and costs caused by repetitive collection of data, researchers may perform effective research and achieve qualified and competitive research results. Moreover, vulnerable and important geological data in the field can be protected from damage caused by indiscriminate, repetitive collection of specimens that have previously been secured. Through the establishment of additional metadata concerning the diversity of rocks, fossils, and thin sections kept at other universities and research institutes, much more data can be recognized, leading to advanced research results. Furthermore, specialized comparison and analysis of basic mineralogy and petrology knowledge are anticipated, based on the use of the metadata.

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.

Present Status and Comparative Study on the Geological Natural Monuments of South and North Koreas (남·북한 지질분야 천연기념물의 현황과 비교)

  • Kim, Dong Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.20-39
    • /
    • 2009
  • Abstract This research is a comparative study on the geological natural monuments of South and North Koreas. The classification system on natural monuments between South Korea and North Korea is similar, but North Korea's designations are relatively well-balanced. The geology field of South Korea was composed of rocks, caves, fossils and general geology, whereas that of North Korea was subdivided into rocks, fossils, strata, mineral springs, hot springs, geography, waterfalls, lakes, caves and pools. Unlike South Korea, North Korea designates and preserves geological structures such as fold and fault, and representative outcrops of mine. It is suggested that South Korea has to establish natural monument management policies for preserving geological structures and outstanding outcrops of mine. The 47-year period of preserving natural monuments in South Korea was divided into the stages I (1962~1980), II (1981~1995) and III (1996~2008). The designated numbers of geological natural monuments in the stage I, II and III average 1.1, 0.1 and 2.6, respectively. The number of geological natural monuments in South Korea is highest in Jeju province, whereas that in North Korea is highest in Gangwon province. This implies that natural monuments have been well protected especially in the locality of slow urbanization.

A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • 최재화;조철현;류동우;김학규;서백수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM의 시공을 위한 기술적 고찰)

  • Jeong, Hoyoung;Zhang, Nan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • The use of TBM (tunnel boring machine) gradually increases in worldwide tunneling projects. TBM machine are often applied to more difficult and complex geological conditions in urban area, and many problems and difficulties have been reported due to these geological conditions. However, in Korea, there is a lack of research on difficult grounds so far. This paper discussed general aspects of investigation method, and problems of TBM tunneling in difficult grounds. Construction cases that passed through the difficult grounds in worldwide were analyzed and the typical difficult grounds were classified into 11 cases. For each case, the definition and general problems were summarized. Particularly, for mixed ground and boulder ground, and fault zone, which are frequent geological conditions in urban area with shallow depth, classification system, investigation methods and major considerations were discussed, and proposed the direction of future research. This paper is a basic study for the development of TBM construction technology in difficult ground, and it is expected that it will be useful for related research and construction of TBM in difficult ground in the future.

Verification of 2-Parameters Site Classification System and Site Coefficients (I) - Comparisons with Well-known Seismic Code and Site Response Characteristics (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (I) - 국외 내진설계기준 및 부지응답특성과의 비교)

  • Lee, Sei-Hyun;Sun, Chang-Guk;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.25-34
    • /
    • 2012
  • In order to verify that the recently proposed two-parameters site classification system and the corresponding site coefficients are suitable for the local geological conditions in Korea, a comparison was conducted with current Korean seismic code, Eurocode-8, NYC DOT seismic code. The design spectrum of the current Korean seismic code is significantly amplified in the long-period range, whereas the other response spectra, including the proposed two-parameters approach, are significantly amplified in the short-period range, which is a typical geological condition in Korea. In addition, based on the results of site response analyses in the specific $10km{\times}10km$ area of Gyeongju, spatial distributions of site coefficients from site-specific seismic response analyses were compared with the proposed site coefficients, as well as those specified in the current Korean seismic code. The site coefficients ($F_a$ and $F_v$) from the current Korean seismic codes show significantly high spatial error distributions compared with those specified by the two-parameters site classification system. Therefore, the proposed system is suitable for regions of shallow bedrock including the Korean peninsula.

Rock Mass Classification of Tertiary Unconsolidated Sedimentary Rocks In Pohang Area (포항지역 신생대 제3기 미고결 퇴적층의 암반분류)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Yung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.999-1008
    • /
    • 2009
  • A series of sedimentary rocks which are formed in the Tertiary are distributed around Samcheok(Samcheok-Pukpyoung basin), Younghae(Younghae basin), Pohang(Pohang basin), Gyeongju(Yangnam basin), Ulsan(Ulsan basin), Jeju(Seogyuipo formation) in the southern region of the Korean Peninsula. This study concerned with geological, geophysical, geotechnical properties of the unconsolidated rocks in the Pohang area. A consolidated rocks are classified as hard rock - soft rock - weathered rock - residual soil follows in degree of weathering. But unconsolidated rocks has soil properties as well as rock's at the same time. The results of field excursion, boring, borehole-logging, rock testing, geophysical survey, laboratory test are soft rock range, but the durability of the rock until the residual soil from the weathered rock. We accomplished the rock mass classification of the unconsolidated rocks.

  • PDF

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbereak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.303-310
    • /
    • 2002
  • Overbreak occurred inevitably in a tunnel excavation, Is the main factor for increasing cost and time in tunnel projects. Furthermore the damage to the remained rock mass related to the overbreak can give rise to a serious safety problem in tunnels. As a rule of thumb, causes for the overbreak are inaccuracy in drilling, the wrong design of blasting and selection of explosives, and heterogeneity in rock mass. Specially, the geological features of the rock mass around periphery of an excavation are very important factors, so a lot of researches have been conducted to describe these phenomena. But the quantitative geological classification of the rock mass for the overbreak and the method for decreasing the amount of the overbreak have not been established. Besides, the technical improvement of the charge method is requested as explosives for the smooth blasting have not functioned efficiently. In this study, the working face around periphery of an excavation has been continuously sectionalized to 5∼6 parts, and the new Blastability Index for the overbreak based on 6 factors of RMD(Rock Mass Description), UCS(Uniaxial Compressive Strength) JPS(Joint Plane Spacing), JPO(Joint Plane Orientation), JPA(Joint Plane Aperture) and FM(Filling Material) is proposed to classify sections of the working face. On the basis of this classification, the distance between contour holes and the charging density are determined to minimize the overbreak. For controlling the charging density and improving the function of explosives, the New Deck Charge(N.D.C) method utilizing the deck charge method and detonation transmission in hole has been developed.

  • PDF