• 제목/요약/키워드: Geogrid-reinforced

검색결과 187건 처리시간 0.022초

블록식 보강토 옹벽의 하자발생 사례 분석 (Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall)

  • 신은철;오영인;김종인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

지오그리드로 보강된 철도노반의 한계속도에 관한 연구 (Critical Speed Analysis of Geogrid-Reinforced Rail Roadbed)

  • 신은철;이규진;오영인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.534-539
    • /
    • 2001
  • This paper presents the critical speed analysis of geogrid-reinforced rail roadbeds on soft soil. A rail roadbed on soft ground must be designed to avoid intolerable stress in the underlying soil and to give sufficient support for the rail system. At high speeds, the deformation of rail systems will gain dynamic amplification, and reach excessive values as a certain speed, here termed critical speed is approached. The elastic Winkler foundation model was used to predict the critical speed of geogrid-reinforced rail roadbeds on soft soil and the model properties were determined by the in-situ cyclic plate load test. Based on the parametric study of elastic beam on Winkler foundation model, the critical speed increase with the increase of the flexural risidity of subgrade EI and the stiffness coefficient of Winkler foundation k. From the in-situ cyclic load tests and analysis of elastic beam on Winkler foundation model, the critical speed increase with increase in number of reinforced layer and non-dimensional value for depth of first geogrid layers and the thickness of reinforced rail roadbed u/d.

  • PDF

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.

침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구 (A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect)

  • 박시삼;이훈연;유충식;이대영;이부락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

Stress waves transmission from railway track over geogrid reinforced ballast underlain by clay

  • Fattah, Mohammed Y.;Mahmood, Mahmood R.;Aswad, Mohammed F.
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.1-27
    • /
    • 2022
  • Extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on behavior of reinforced ballast layer and induced strains in geogrid. A half full-scale railway was constructed for carrying out the tests, the model consists of two rails 800 mm in length with three wooden sleepers (900 mm × 10 mm × 10 mm). The ballast was overlying 500 mm thickness clay in two states, soft and stiff state. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the effect of frequency on the settlement ratio is almost constant after 500 cycles. This is due to that the total settlement after 500 cycles, almost reached its peak value, which means that the ballast particles become very close to each other, so the frequency is less effective for high contact particles forces. The average maximum vertical stress and pore water pressure increased with frequency.

I형 연결장치를 이용한 전면블록/지오그리드 보강재의 연결강도 평가 (A Study on Connection Strength Evaluation of Wall Facing/Geogrid Using I-type Connection Device)

  • 한중근;홍기권;조삼덕;이광우
    • 한국지반신소재학회논문집
    • /
    • 제8권3호
    • /
    • pp.45-52
    • /
    • 2009
  • 최근 국내에서는 시공성 및 경제성이 우수하고, 수려한 경관을 연출할 수 있는 보강토옹벽의 적용이 급증하고 있는 추세이다. 일반적으로 블록식 보강토옹벽 시공시 전면블록과 보강재 사이의 연결은 블록에 미리 형성시킨 돌기(전단키형 방식) 또는 플라스틱 핀(핀형 방식)을 이용하여 보강재를 블록에 정착시키는 방식으로 이루어지고 있다. 그러나 이와 같은 연결방식은 시공중 보강재에 부분적인 손상의 원인이 되며, 이로 인해 보강토옹벽의 안정성에 문제를 야기시킬 수 있다. 따라서 본 연구에서는 기존 연결방식의 문제점을 해결하고자, 안정성을 보다 높이고 경제성은 기존 방식과 유사한 I형 연결장치를 이용한 전면블록/지오그리드 보강재의 연결방법을 개발하였으며, 현장 적용을 위하여 연결강도 특성을 평가하였다.

  • PDF

다층 시스템에서 지오그리드의 보강특성에 관한 연구 (A Study on the Reinforced Characteristic of Geogrids in Multi-Layered System)

  • 심재범;신은철;신민호;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.533-540
    • /
    • 2002
  • Recently, geogrid reinforcement has been applied tn the subgrade of the roadway and the railway on the compressible layered soil, and the relevant reserch on the reinforcing mechanism has been performed. In this study, mechanics of geogrid reinforcement and the parameters for the improvement of bearing capacity are evaluated and presented based on the case histories of the field load test on the geogrid-reinforced layered subgrade

  • PDF

섬유보강 아스팔트 포장 부착 전단강도 개선방안 연구 (A Study on Improvement of Bonding Shear Strength of Geogrid-Reinforced Asphalt Pavements)

  • 박상구;김기현;권수안;정진훈
    • 대한토목학회논문집
    • /
    • 제29권5D호
    • /
    • pp.619-625
    • /
    • 2009
  • 본 연구에서는 반사균열 및 러팅을 저감시키는 것으로 알려진 섬유보강 아스팔트 포장의 성능을 극대화하기 위한 방안을 찾기 위하여 3곳의 구간에서 현장 시험시공을 실시하였다. 섬유보강 아스팔트의 부착 전단강도에 영향을 미칠 수 있는 시공 도중 발생 가능한 문제점을 정의하고 시험시공 시 이에 맞는 시공조건을 의도적으로 만들어 주었다. 시험시공 직후와 약 1년이 지난 후 시공 상태가 양호한 위치와 불량한 위치에서 각각 코어를 채취하고 부착 전단강도 실험을 수행하여 그 결과를 비교 분석하였다. 이를 통하여 섬유보강 아스팔트의 성능을 향상시키기 위하여 현장에서 지켜야 할 만한 규정을 제안하였다.

지오그리드로 보강된 철도노반의 침하 거동 (Settlement Behavior of Geogrid Reinforced Railroadbed)

  • 신은철;김두환;김남현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.407-414
    • /
    • 2000
  • Recently the geogrids are being used in some large projects such as Inchon International Airport construction, highway construction, and Korean High-Speed Railway construction with not only the merit of simple construction but also reinforcing efficiency for the soft ground. Main function of roadbed is to provide a stable foundation in terms of bearing capacity and settlement for the subballast and ballsat layers. Differential settlement of the railroad should be avoided. The cyclic laboratory model tests were performed to investigate the settlement behavior of geogrid reinforced railroadbed. The ratio of settlement of roadbed under cyclic loading with three layers of geogrid reinforced is less than 1/2 of the roadbed thickness without reinforcement.

  • PDF