• 제목/요약/키워드: Geo-referencing

Search Result 31, Processing Time 0.023 seconds

Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps (1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.505-513
    • /
    • 2014
  • The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

A Study on the Using of Geo-Spatial Information System for Operation and Management of the Underground Facilities (지하시설물의 유지관리를 위한 지형공간정보시스템의 활용에 관한 연구)

  • 신봉호;박영인;엄재구;양승영
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 1994
  • The purpose of this paper is to use geo-spatial information system for effective operation and management of the underground facilities. The subject area is selected and collected all of the drawing in order to get the coordinate points(tic), which become the standard of the subject area and that can be gotten by way of practising control surveying from a existing triangulation station spatial information and attribute information are classificated from obtained data. Also, after giving the code in the attribute information to make it data-based, connecting spatial information with the attribute information to overlap layer each other, and compared the positional accuracy of the data. From the results of this study, conclusions are acquired as follows; 1) To construct the Database of the spatial and attribute data, which contain all kinds of drawings in underground structures, the reservation of registers and the details of changes and so on, results in easily referencing, compiling and analyzing the reserved data in system as their own purposes. 2) It is expected that we can effectively operate and manage the situation among the underground facilities so accurately that we may obviate the safety accidents or the damages of life and property.

  • PDF

Improvement Scheme of Airborne LiDAR Strip Adjustment

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.355-369
    • /
    • 2018
  • LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.

Construction of the Facilities Management System by Video Structuring (동영상자료 구조화에 의한 시설물관리시스템 구축)

  • Yoo, Hwan-Hee;Choi, Kyoung-Ho;Koo, Heung-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.69-74
    • /
    • 2004
  • By the expanding of infrastructure caused by urbanization, new technologies are required to manage various kinds of facilities. GIS has been appraised as valuable technology for facilities management since the 1990s. Therefore, the long and mid term GIS construction plan has been established by the national government and the local government. Some facilities management systems have been built and developed for suppling user-friendly functions. From this point of view, the information system based on the video sequences is considered a more effective way to improve the defects of conventional GIS using the digital map or the image as the base map. Using the video sequences as a base map, the availability of the system ill be increased because the real world information can be furnished to the users. In this study, through the connection between the GIS data, the digital map and the attribute data, and the video sequences taken from the airship using the video geo-referencing and the object tracking, we developed the facilities management system as a prototype which can effectively manage the road utilities. We also presented potentialities of the suggested system for facility management based on the video sequences.

  • PDF

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF

Photogrammetric Georeferencing Using LIDAR Linear and Areal Features

  • HABIB Ayman;GHANMA Mwafag;MITISHITA Edson
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.7-19
    • /
    • 2005
  • Photogrammetric mapping procedures have gone through major developments due to significant improvements in its underlying technologies. The availability of GPS/INS systems greatly assist in direct geo-referencing of the acquired imagery. Still, photogrammetric datasets taken without the aid of positioning and navigation systems need control information for the purpose of surface reconstruction. Point features were, and still are, the primary source of control for the photogrammetric triangulation although other higher-order features are available and can be used. LIDAR systems supply dense geometric surface information in the form of three dimensional coordinates with respect to certain reference system. Considering the accuracy improvement of LIDAR systems in the recent years, LIDAR data is considered a viable supply of photogrammetric control. To exploit LIDAR data, new challenges are poised concerning the representation and reference system by which both the photogrammetric and LIDAR datasets are described. In this paper, registration methodologies will be devised for the purpose of integrating the LIDAR data into the photogrammetric triangulation. Such registration methodologies have to deal with three issues: registration primitives, transformation parameters, and similarity measures. Two methodologies will be introduced that utilize straight-line and areal features derived from both datasets as the registration primitives. The first methodology directly incorporates the LIDAR lines as control information in the photogrammetric triangulation, while in the second methodology, LIDAR patches are used to produce and align the photogrammetric model. Also, camera self-calibration experiments were conducted on simulated and real data to test the feasibility of using LIDAR patches for this purpose.

  • PDF

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation (도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가)

  • Lee, Jung-Joo;Hwang, Young-Seok;Park, Seong-Il;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.475-488
    • /
    • 2018
  • Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.