• Title/Summary/Keyword: Geo-referencing

Search Result 31, Processing Time 0.023 seconds

Research on Geo-Referencing Methodology of Point Clouds Data in Urban Area (포인트 클라우드 자료의 도심지 Geo-Referencing 방안 연구)

  • Cho, Hyung-Sig;Sohn, Hong-Gyoo;Han, Soo-Hee;Hwang, Sae-Mi-Na
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.285-287
    • /
    • 2010
  • It is recently enlarged to necessity of 3D spatial information model in urban areas. and in order to that, It is increased to use the terrestrial LiDAR. The Point clouds which are received by terrestrial LiDAR take a relateive coordinate. For transform into absolute coordinate, it carry out GPS surveying. However, it is difficult to geo-referencing of point clouds using the GPS due to high buildings and facilities in urban area. This study suggests a methodology, that is geo-referencing of point clouds which is received from terresstrial LiDAR in urban area and then verified accuracy of geo-referencing of point clouds. In order to geo-Referencing of point clouds which are received in Engineering building of Yonsei Univ., it was be setout through GPS surveying, and then obtained absolute coordinate of real building. Using this coordinate, It was operated geo-referencing of point clouds, verified accuracy between check point and geo-referenced point clouds. As a result, RMSE of check point shows that GPS surveying is 6.9~8.0cm.

  • PDF

Analysis of the Effects of Three Line Scanner's Focal Length Bias (Three Line Scanner의 초점거리 오차의 영향에 관한 연구)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The positions, attitudes, and internal orientation parameters of three line scanners are critical factors in order to acquire the accurate location of objects on the ground. Based on the assumption that positions and attitudes of the sensors are derived either from direct geo-referencing which of using Global Positioning Systems (GPS) and Inertial Navigation Systems (INS), or from indirect geo-referencing which of using Ground Control Points (GCPs), this paper describes on biased effects of Internal Orientation Parameter (IOP) on the ground. The research concentrated on geometrical explanations of effects from different focal length biases on the ground. The Synthetic data was collected by reasonable flight trajectories and attitudes of three line scanners. The result of experiments demonstrated that the focal length bias in case of indirect geo-referencing does not have critical influences on the quality of reconstructed ground space. Also, the relationships between IO parameters and EO parameters were found by the correlation analysis. In fact, the focal length bias in case of the direct geo-referencing caused significant errors on coordinates of reconstructed objects. The RMSE values along the vertical direction and the amount of focal length bias turned out to be almost perfect linear relationship.

A Study on Determining Control Points and Surveying Feature Points for Geo-Referencing of Terrestrial LiDAR Data in Urban Areas (도심지 지상 LiDAR 자료의 Geo-Referencing을 위한 기준점 선정 및 특징점 측량 방안 연구)

  • Park, Hyo-Keun;Han, Soo-Hee;Cho, Hyung-Sig;Kim, Sung-Hoon;Sohn, Hong-Gyoo;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.179-186
    • /
    • 2010
  • In this research, an effective method for absolute positioning of feature points is proposed, which is applicable to geo-referencing of terrestrial LiDAR data scanned in dense urban areas. GPS positioning, common in absolute positioning, is apt to fail in the presence of signal disturbancein dense urban circumstances, while traditional surveying methods, including traversing and leveling, are generally more costly for wider areas. The idea is that reference points, marked on top of buildings, are surveyed by GPS positioning and then feature points are relatively positioned from the reference points. The present method, if laser scanning is accompanied, gets two advantages; one is that less feature points need to be surveyed because they can be substituredby reference points, and the other is that laser scanning can be more stably carried out. The present method was shown, from the experiments, to be cost-effective against traditional ones.

Bundle Adjustment of Aerial Photographs using GCP Image Chip (영상칩 지상기준점을 이용한 항공사진 번들조정)

  • 김기홍;손홍규;김호성;백종하;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.239-243
    • /
    • 2004
  • Recently various thematic maps and image maps using aerial photograph and satellite imagery are frequently made. The geo-referencing is essential to make image map and topographic map using aerial photograph and satellite imagery. For this geo-referencing, Ground Control Points (GCPs) are needed. In this paper, we used GPS relative positioning to measure GCP ground coordinate and the accuracy of 8cm level was achieved. We made GCP image chips for the efficiency of geo-referencing and carried out the bundle adjustment of aerial photographs using GCP image chips to acquire the GCP photo coordinate with image matching technique. Finally we analyzed the accuracy of bundle adjustment compared to the accuracy of the case in using digital maps to acquire GCP photo coordinate.

  • PDF

Development of a Portable Multi-sensor System for Geo-referenced Images and its Accuracy Evaluation (Geo-referenced 영상 획득을 위한 휴대용 멀티센서 시스템 구축 및 정확도 평가)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.637-643
    • /
    • 2010
  • In this study, we developed a Portable Multi-sensor System, which consists of a video camera, a GPS/MEMS IMU and a UMPC to acquire video images and position/attitude data. We performed image georeferencing based on the bundle adjustment without ground control points using the acquired data and then evaluated the effectiveness of our system through the accuracy verification. The experimental results showed that the RMSE of relative coordinates on the ground point coordinates obtained from our system was several centimeters. Our system can be efficiently utilized to obtain the 3D model of object and their relative coordinates. In future, we plan to improve the accuracy of absolute coordinates through the rigorous calibration of the system and camera.

Automatic Geo-referencing of Sequential Drone Images Using Linear Features and Distinct Points (선형과 특징점을 이용한 연속적인 드론영상의 자동기하보정)

  • Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • Images captured by drone have the advantage of quickly constructing spatial information in small areas and are applied to fields that require quick decision making. If an image registration technique that can automatically register the drone image on the ortho-image with the ground coordinate system is applied, it can be used for various analyses. In this study, a methodology for geo-referencing of a single image and sequential images using drones was proposed even if they differ in spatio-temporal resolution using linear features and distinct points. Through the method using linear features, projective transformation parameters for the initial geo-referencing between images were determined, and then finally the geo-referencing of the image was performed through the template matching for distinct points that can be extracted from the images. Experimental results showed that the accuracy of the geo-referencing was high in an area where relief displacement of the terrain was not large. On the other hand, there were some errors in the quantitative aspect of the area where the change of the terrain was large. However, it was considered that the results of geo-referencing of the sequential images could be fully utilized for the qualitative analysis.

A Proposal of a Shape Matching and Geo-referencing method for Building Features in Construction CAD Data to Digital Map using a Vertex Attributed String Matching algorithm (VASM 알고리즘을 이용한 건축물 CAD 자료의 수치지도 건물 객체와의 형상 정합 및 지도좌표 부여 방법의 제안)

  • Huh, Yong;Yu, Ki-Yun;Kim, Hyung-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.387-396
    • /
    • 2008
  • An integration between construction CAD data and GIS data needs geo-referencing processes of construction CAD data whose coordinate systems are their own native or even unknown. Generally, these processes are based on manually detected conjugate-vertices. In this study, we proposed an semi-automated conjugate -vertices detection method for building features between construction CAD data and a digital map using a vertex attributed string matching algorithm. A geo-referencing function for construction CAD data based on the similarity transform could be derived with those conjugate-vertices. Using our proposed method, we overlaid geo-referenced CAD data to a digital map of the College of Engineering, Seoul National University and evaluated our method.

Creating Mosaic Image of the Korean Peninsula from CORONA Imagery (CORONA 영상을 이용한 한반도 지역 모자이크 영상 제작)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.67-73
    • /
    • 2005
  • The urbanization of Korea has been rapidly progressed since 1960, but satellite imagery have provided the information only after 1975. Recently released CORONA imagery is one of the few source of satellite image which can provide 1960's topographic information of the Korean Peninsular. It can be applied to change detection in various fields such as urban, forest, and environmental planning. In this research mosaic image of past Korean Peninsular using CORONA imagery in the 1960s were generated. A polynomial equation and a modified collinearity equation were applied for geo-referencing and a comparative analysis was conducted. In this research the 2nd polynomial equations were used for geo-referencing of CORONA imagery. After carrying out geo-referencing, mosaic image was generated using Erdas Imagine. It is assumed that this result image is very useful for various fields such as generation of thematic maps, urban planning, and change detection.

  • PDF

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Direct Geo-referencing for Laser Mapping System

  • Kim, Seong-Baek;Lee, Seung-yong;Kim, Min-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.423-427
    • /
    • 2002
  • Contrary to the traditional text-based information, 4S(GIS,GNSS,SIIS,ITS) information can contribute to the citizen's welfare in upcoming era. Recently, GSIS(Geo-Spatial Information System) has been applied and stressed out in various fields. As analyzed the data from GSIS arena, the position information of objects and targets is crucial and critical. Therefore, several methods of getting and knowing position are proposed and developed. From this perspective, Position collection and processing are the heart of 4S technology. We develop 4S-Van that enables real-time acquisition of position and attribute information and accurate image data in remote site. In this study, the configuration of 4S-Van equipped with GPS, INS, CCD and eye-safe laser scanner is shown and the merits of DGPS/INS integration approach for geo-referencing is briefly discussed. The algorithm of DGPS/INS integration fur determination of six parameters of motion is eccential in the 4S-Van to avoid or simplify the complicated computation such as photogrammetric triangulation. 4S-Van has the application of Laser-Mobile Mapping System for three-dimensional data acquisition that merges the texture information from CCD camera. The technique is also applied in the fields of virtual reality, car navigation, computer games, planning and management, city transportation, mobile communication, etc.

  • PDF