• Title/Summary/Keyword: Geo/Geo/1/1

Search Result 1,467, Processing Time 0.035 seconds

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets (공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • A river boundary is defined as the intersection between a main stream of a river and the land. Mapping of the river boundary is important for the protection of the properties in river areas, the prevention of flooding and the monitoring of the topographic changes in river areas. However, the utilization of the ground surveying technologies is not efficient for the mapping of the river boundary due to the irregular surfaces of river zones and the dynamic changes of water level of a river stream. Recently, the spatial information data sets such as the airborne LiDAR and aerial images are widely used for coastal mapping due to the acquisition of the topographic information without human accessibility. Due to these advantages, this research proposes a semi-automatic method for mapping of the river boundary using the spatial information data set such as the airborne LiDAR and the aerial photographs. Multiple image processing technologies such as the image segmentation algorithm and the edge detection algorithm are applied for the generation of the 3D river boundary using the aerial photographs and airborne topographic LiDAR data. Check points determined by the experienced expert are used for the measurement of the horizontal and vertical accuracy of the generated 3D river boundary. Statistical results show that the generated river boundary has a high accuracy in horizontal and vertical direction.

The Analysis of Geothermal Gradient at Icheon Hot Spa Area (이천 온천원보호지구의 지온경사 해석)

  • Lee, Chol-Woo;Moon, Sang-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • Nine wells have been developed for uses of thermal waters at the Icheon hot spa area. Drilling depths of those hot spring wells range from 166 to 294 m and their piezometric heads are located at about 50 m below the surface. Using the differences between the surface and bottom temperatures within all boreholes, we can simply estimate geothermal gradient in this area. Thus, we obtained the highest, lowest and average gradient values as $64^{\circ}C/km$ from SB-2 well, $45^{\circ}C/km$ from SB-1 well and approximately $54.28^{\circ}C/km$, respectively. However, observing the MRD-2 well additionally drilled into the depth of 996 m, we found out that this study area has widely experienced the temperature disturbance due to thermal groundwater penetration through the fracture systems within the depth of 720 m. Unlikely this phenomenon, we can conclude that the groundwater flow below the depth of 720 m does not exist. Therefore, using only those temperature data below the 720 m depth, we can estimate reasonable geo-thermal gradient values as $33^{\circ}C/km$ in this study area. Pumping test shows that outflowing temperature is $36^{\circ}C$ corresponding to the temperature logging data at 720 m depth.

Stability Evaluation of Rear-Parapet Caisson Breakwaters under Regular Waves by Numerical Simulation (수치해석을 통한 규칙파를 받는 후부 패러핏 케이슨 방파제의 안정성 평가)

  • Lee, Byeong Wook;Park, Woo-Sun;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, using the CADMAS-SURF model, the characteristics of the wave pressures and the wave forces were analyzed according to the installation position of the parapet on top of the caisson, and the stability evaluation was carried out using estimated wave forces for the design wave condition. Numerical results show that adopting the rear-parapet reduces the front maximum wave pressures and wave forces, and the maximum wave pressure acting on the rear-parapet increases slightly compared to the front parapet, but the wave force acting on the rear-parapet has little effect on the stability of the breakwater due to the phase difference with the wave force acting on the front of the breakwater. In addition, impulsive wave pressures did not occur, as Yamamoto et al. (2013) pointed out the problem of the rear-parapet breakwater. As a result of the stability against sliding and overturning, it was estimated that the target safety factor of 1.2 could be secured by the self-weight of 13% less than the case of the front parapet. At this time, the maximum ground pressure was also reduced by 30%, and the applicability of the rear-parapet structure to the actual site was evaluated as high.

Design of RFID Authentication Protocol Using 2D Tent-map (2차원 Tent-map을 이용한 RFID 인증 프로토콜 설계)

  • Yim, Geo-su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.425-431
    • /
    • 2020
  • Recent advancements in industries and technologies have resulted in an increase in the volume of transportation, management, and distribution of logistics. Radio-frequency identification (RFID) technologies have been developed to efficiently manage such a large amount of logistics information. The use of RFID for management is being applied not only to the logistics industry, but also to the power transmission and energy management field. However, due to the limitation of program development capacity, the RFID device is limited in development, and this limitation is vulnerable to security because the existing strong encryption method cannot be used. For this reason, we designed a chaotic system for security with simple operations that are easy to apply to such a restricted environment of RFID. The designed system is a two-dimensional tent map chaotic system. In order to solve the problem of a biased distribution of signals according to the parameters of the chaotic dynamical system, the system has a cryptographic parameter(𝜇1), a distribution parameter(𝜇2), and a parameter(𝜃), which is the constant point, ID value, that can be used as a key value. The designed RFID authentication system is similar to random numbers, and it has the characteristics of chaotic signals that can be reproduced with initial values. It can also solve the problem of a biased distribution of parameters, so it is deemed to be more effective than the existing encryption method using the chaotic system.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

GIS-based Assessment of the Lateral Connectivity in the Cheongmi-cheon Stream, South Korea (청미천에서 GIS 기반 횡적 연결성 평가)

  • Jin, Seung-Nam;Cho, Hyunsuk;Chu, Yunsoo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.154-162
    • /
    • 2019
  • Lateral connectivity between the channel and the floodplains has been damaged by the levee construction and channelization in most streams of South Korea. The purpose of this study was to develop a technique for easily and remotely assessing lateral connectivity using GIS in the streams and to evaluate the effectiveness of the assessment method by applying it to Cheongmi-cheon Stream, a representative stream in the central Korean Peninsula. The metrics of the lateral connectivity assessment are composed of (1) existence of remaining wetlands and (2) land use property as a habitat quality of the former floodplain outside the levee and (3) existence of levee barrier, (4) connectivity to the stream and (5) connectivity to the upland natural habitats as a connectivity from the channel through floodplain to the upland forest. According to the result of applying the assessment method to Cheongmi-cheon Stream, the lateral connectivity was severely damaged due to the levee construction and land use change in the former floodplain. The GIS-based assessment of the lateral connectivity developed in this study is expected to be used as a useful tool for identifying limitations of current connectivity in various attempts to restore lateral connectivity in riparian ecosystems.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Suggestion on the Dredging Time of Sediments Behind Debris Barrier Using Rainfall Data (강우자료를 이용한 사방댐 배면 퇴적물의 준설시기 선정)

  • Song, Young-Suk;Kim, Minseok;Jung, In-Keun
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The rainfall intensity-duration curve (I-D curve) was used for selecting the dredging time of sediments behind a debris barrier which is located at the study area in Inje-gun, Kangwon Province. The I-D curve was newly suggested by using the data of rainfall-induced landslides for about 30 years from June to September in Kangwon Province. According to the monitoring results, the landslides have been not occurred during the monitoring period of the dredged sediments management system at the study area, and also all of the rainfall events were located below the I-D curve. The weight of the dredged sediments measured at the management system in the field was increased but the weight increment was small. It means that the increase of the dredged sediments was not the effect of landslide but the effect of soil erosion at the ground surface due to heavy rainfall. The weight of the dredged sediments behind a debris barrier could be known in real time using the rainfall data measured at the management system. Also, when the I-D curve is used with the management system, it is possible to select the optimum dredging time for sediments behind debris barrier.

Analysis of the Change in the Area of Haeundae Beach Based on Wave Characteristics (파랑특성을 고려한 해운대 해수욕장의 해빈면적 변화에 관한 연구)

  • Kim, Jong-Beom;Kim, Jong-Kyu;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.324-339
    • /
    • 2021
  • In this study, we determined the correlation between the wave characteristics and the change in the area of Haeundae Beach, conducted regression analysis between the wave characteristics and the change in beach area, and derived a formula for calculating the change in beach area. The change in beach area was calculated by applying the derived formula to wave observation data corresponding to a period of approximately 10 months, and the formula was subsequently validated by comparing the obtained results with the observed area. It is found that the error associated with the formula for calculating the change in beach area ranges from 1.5 m to 2.7 m based on the average beach width, and the correlation coefficient corresponding to the observed area ranges from 0.91 to 0.94. Furthermore, it is observed that the change in beach area is af ected by the wave direction in the western zone, wave height in the central zone, and wave height and wave period in the eastern zone. These results can contribute to understanding the impact of a coastal improvement project on the beach area fluctuation characteristics of Haeundae Beach and the ef ectiveness of such a coastal improvement project. By applying the aforementioned derived formula to highly accurate wave prediction data, the change in beach area can be calculated and incorporated for predicting significant long-term changes in beach areas. Furthermore, such a prediction can be considered as the basis for making decisions while establishing preemptive countermeasure policies to prevent coastal erosion.