• Title/Summary/Keyword: Genotyping

Search Result 729, Processing Time 0.034 seconds

Confirmation of Parentage of the Pear Cultivar 'Niitaka' (Pyrus pyrifolia) Based on Self-incompatibility Haplotypes and Genotyping with SSR Markers

  • Kim, Hoy-Taek;Nou, Ill-Sup
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • The parentage of the horticulturally important pear cultivar 'Niitaka' was confirmed by determining its S-genotypes based on the S-RNase and $PpSFBB^{-{\gamma}}$ genes, and genotyping using simple sequence repeat (SSR) markers. Previous reports suggested that the cultivars 'Amanogawa' and 'Imamuraaki' were the parents of 'Niitaka', although the cultivars 'Chojuro' and 'Shinchu' were also examined as candidate parents, along with two other cultivars. In the present study, the S-genotype of 'Niitaka' was determined to be $S^3S^9$. The $S^9$-RNase of 'Niitaka' was found to be likely inherited from the parent 'Amanogawa' ($S^1S^9$) and the $S^3$-RNase from 'Chojuro' ($S^3S^5$) or 'Shinchu' ($S^3S^5$). Based on the S-genotypes, the cultivar 'Imamuraaki' ($S^1S^6$) had no contribution to the parentage of 'Niitaka' ($S^3S^9$). A total of 67 polymorphic SSR markers were used to further confirm the parentage of 'Niitaka'. Discrepancies were found at several SSR loci between 'Niitaka' and the cultivars 'Imamuraaki' and 'Shinchu', whereas 'Niitaka' inherited alleles from 'Amanogawa' and 'Chojuro' at all SSR loci. Therefore, our findings established that 'Amanogawa' and 'Chojuro' are the parents of pear cultivar 'Niitaka', and not 'Imamuraaki' as previously reported.

Phenotypic and Genetic Effects of Dwarfing Genes on Plant Height and Some Agronomic Traits in Wheat

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.276-276
    • /
    • 2022
  • Wheat is one of the most widely grown food crops worldwide. Extreme precipitation and wind disturbances increased due to the abnormal climate, which resulted in increased lodging. Introduction of dwarf genes in wheat significantly increased lodging resistance and productivity in wheat breeding. In this study, we performed the genotyping of dwarfing genes between 'Keumkang' and 'Komac 5' ('Keumkang' mutant). In addition, we investigated the relationship between plant height and several phenotypic characters using F2 segregation populations derived from crosses between the two varieties. There was no significant difference in phenotypic characters between the two varieties except for plant height. In the genotyping analysis using dwarfing genes, mutations of two dwarfing gene were found to be induced between the two varieties. The four genotypes of the F2 populations from a crossing between 'Keumkang' and 'Komac 5' were used to compare and evaluate the effects of two dwarfing genes. Plants with two single mutant dwarfing gene and double mutant dwarfing gene revealed reduced plant heights than control plants by 4.5%, 6.9%, and 33.2%, respectively. The phenotype analysis showed that double mutant dwarfing gene affected wheat stem growth as the length decreases from the second node, resulting in decreased plant height. However, there were no significant differences in the agronomic traits between mutant plants and control plant. These results may provide novel information about the effect of double mutant dwarfing gene on plant height, and may help improve lodging tolerance and wheat yield.

  • PDF

A simple and rapid method for detection of single nucleotide variants using tailed primer and HRM analysis

  • Hyeonguk Baek;Inchul, Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.209-214
    • /
    • 2023
  • Background: Single nucleotide polymorphisms (SNPs) are widely used genetic markers with applications in human disease diagnostics, animal breeding, and evolutionary studies, but existing genotyping methods can be labor-intensive and costly. The aim of this study is to develop a simple and rapid method for identification of a single nucleotide change. Methods: A modified Polymerase Chain Reaction Amplification of Multiple Specific Alleles (PAMSA) and high resolution melt (HRM) analysis was performed to discriminate a bovine polymorphism in the NCAPG gene (rs109570900, 1326T > G). Results: The inclusion of tails in the primers enabled allele discrimination based on PCR product lengths, detected through agarose gel electrophoresis, successfully determining various genotypes, albeit with some time and labor intensity due to the use of relatively costly high-resolution agarose gels. Additionally, high-resolution melt (HRM) analysis with tailed primers effectively distinguished the GG genotype from the TT genotype in bovine muscle cell lines, offering a reliable way to distinguish SNP polymorphisms without the need for time-consuming AS-PCR. Conclusions: Our experiments demonstrated the importance of incorporating unique mismatched bases in the allele-specific primers to prevent cross-amplification by fragmented primers. This efficient and cost-effective method, as presented here, enables genotyping laboratories to analyze SNPs using standard real-time PCR.

Detection and Genotyping of Viruses Detected in Children with Benign Afebrile Seizures Associated with Acute Gastroenteritis (급성 위장관염에 병발하는 양성 무열성 경련 소아 환자의 대변에서 검출된 바이러스 및 유전자형 분석 연구)

  • Yang, Hye-Ran;Jee, Young-Mee;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.12 no.2
    • /
    • pp.183-193
    • /
    • 2009
  • Purpose: Rotaviruses, noroviruses, astroviruses, and enteric adenoviruses cause acute gastroenteritis (AGE) in children. Some children with AGE have afebrile convulsions associated with viral gastroenteritis. The purpose of this study was to detect and genotype viruses from children with AGE or benign infantile seizures associated with mild gastroenteritis (BIS-MG). Methods: Between August 2004 and June 2005, 311 children with AGE were included. Four viral agents, including rotavirus, norovirus, astrovirus, and adenovirus, were analyzed from stool specimens of each patient using the latex agglutination method, enzyme immunoassay, and reverse transcriptase polymerase chain reaction. Genotyping of each virus was performed in 217 of the 311 children. Results: Among 217 children (male, 121; female, 96; mean age, 20.6${\pm}$15.4 months), rotavirus was detected in 109 (50.2%), norovirus in 28 (12.9%), adenovirus in 13 (6.0%), and astrovirus in 2 children (0.9%). Genotyping of rotavirus revealed positive results in 97 children; P[8]G3 in 36, P[4]G2 in 21, P[6]G4 in 10, P[4]G4 in 9, P[8]G9 in 6, P[8]G1 in 6, P[4]G3 in 4, P[4]G9 in 3, and P[6]G2 in 2. Genotyping of norovirus showed GII-4 in 27 of 28 children and GII-6 in 1 child. Sixteen children were diagnosed with BIS-MG. Rotavirus was detected in 13 of 16 children with BIS-MG, and norovirus in 2 children. Genotyping of rotavirus detected in children with BIS-MG revealed P[8]G3 in 6 children, P[4]G2 in 2 children, and P[4]G9 in 1 child. Conclusion: Analysis of viruses from stool specimens indicates that both rotavirus and norovirus are the main viruses related to BIS-MG in children.

  • PDF

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.

Analysis of antibiotic susceptibility of Salmonella Enteritidis isolated from Gyeongnam province and the bacterial genotyping by using RAPD-PCR (경남지역에서 분리한 Salmonella Enteritidis의 항생제 감수성 검사 및 random amplification polymorphic DNA (RAPD)-PCR을 이용한 유전형 분석)

  • Kim, Eun-Gyeong;Kim, Min-Kyung;Kwon, Hyun-Ae;Youn, Do-Kyung;Koo, Jeong-Heon;Park, So-Yeon;Lee, Hui-Geun;Jo, Myeong-Hui;Hah, Do-Yun;Kim, Cheol-Ho;Hwang, Bo-Won;Kim, Sang-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.3
    • /
    • pp.149-155
    • /
    • 2018
  • Salmonella Enteritidis (S. Enteritidis) are found in animals, humans, and environment. In addition, S. Enteritidis draws attention to the public health concerns due to carriage of antibiotic resistance traits. For these reasons, the prevalence and antibiotic resistance patterns of S. Enteritidis are significant issues with regard to public health. To address this issues, a total of 24 strains of S. Enteritidis from 164 samples collected from several slaughterhouses in Gyeong-Nam province in order for antibiotic resistance profiles. Subsequently, we characterized the genotyping by random amplification polymorphic DNA (RAPD)-PCR. As a result, very high level of resistance to protein synthesis inhibition antibiotics and most isolates were susceptible to others. Six random primers were used for RAPD-PCR to reveal genotypes of S. Enteritidis isolates. One of the primer, P1245, generated 147 distinct RAPD-PCR fragments ranging from 400~3000 bp. The number of RAPD-PCR products ranged from 4 to 8 for this primer. The RAPD-PCR fragments could be placed these strains into 3 subgroups and 2 classes by UPGMA cluster analysis. Interestingly, several S. Enteritidis that isolated from different slaughterhouses showed same genotype. These results showed only limited genetic variation among the isolates, those were grouped into a few different patterns of antibiotic resistance.

Detection and genotyping of Giardia intestinalis isolates using intergenic spacer (IGS)-based PCR

  • Lee, Jong-Ho;Lee, Jong-Weon;Park, Soon-Jung;Yong, Tai-Soon;Hwang, Ui-Wook
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.343-353
    • /
    • 2006
  • Giardia intestinalis infections arise primarily from contaminated food or water Zoonotic transmission is possible, and at least 7 major assemblages including 2 assemblages recovered from humans have been identified. The determination of the genotype of G. intestinalis is useful not only for assessing the correlation of clinical symptoms and genotypes, but also for finding the infection route and its causative agent in epidemiological studies. In this study, methods to identify the genotypes more specifically than the known 2 genotypes recovered from humans have been developed using the intergenic spacer (IGS) region of rDNA. The IGS region contains varying sequences and is thus suitable for comparing isolates once they are classified as the same strain. Genomic DNA was extracted from cysts isolated from the feces of 5 Chinese, 2 Laotians and 2 Koreans infected with G. intestinalis and the trophozoites of WB, K1, and GS strains cultured in the laboratory, respectively. The rDNA containing the IGS region was amplified by PCR and cloned. The nucleotide sequence of the 3' end of IGS region was determined and examined by multiple alignment and phylogenetic analysis. Based on the nucleotide sequence of the IGS region, 13 G. intestinalis isolates were classified to assemblages A and B, and assemblage A was subdivided into A1 and A2. Then, the primers specific to each assemblage were designed, and PCR was peformed using those primers. It detected as little as 10 pg of DNA, and the PCR amplified products with the specific length to each assemblage (A1, 176bp; A2, 261 bp; B, 319 bp) were found. The PCR specific to 3 assemblages of G. intestinalis did not react with other bacteria or protozoans, and it did not react with G. intestinalis isolates obtained from dogs and rats. It was thus confirmed that by applying this PCR method amplifying the IGS region, the detection of G. intestinalis and its genotyping can be determined simultaneously.

Analysis of the Genotype Distribution in Cattle Breeds Using a Double Mismatched Primer Set that Discriminates the MC1R Dominant Black Allele (소 MC1R 우성흑모색 대립인자를 구분하는 변형 프라이머를 이용한 소 품종들의 유전자형 분포 분석)

  • Han, Sang-Hyun;Kim, Young-Hoon;Cho, In-Cheol;Jang, Byoung-Gui;Ko, Moon-Suck;Jung, Ha-Yeon;Lee, Sung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.633-640
    • /
    • 2008
  • With a double mismatch primer set designed for amplifying the modified DNA sequence fragments, bovine melanocortin-1 receptor(MC1R) gene encoded in Extension locus which plays a critical role in coat color development was analyzed using polymerase chain reaction mediated restriction fragment length polymorphism(PCR-RFLP). Amplified PCR fragments were successfully discriminated with combining the MspI- and AluI-RFLP into three major alleles(ED, E+, and e), directly related to bovine coat color phenotypes. The genotyping results showed that Jeju black cattle contained three MC1R alleles, but yellowish-red colored Hanwoo and bridle colored Korean Brindle cattle did not contained the dominant black allele ED. However, two dominant black-colored cattle breeds, Holstein and Angus, contained the ED allele over 96% in frequency. Hanwoo×Holstein F1 and Hanwoo×Angus F1 crossbred calves showed ED/e MC1R genotypes, and uniformly black coat color. the results suggested that this MC1R genotyping method be useful in allele discrimination for bovine MC1R gene which used for breed classification and characterization, as one of the important genetic markers, using combination of MspI- and AluI-RFLP for modified PCR product amplified with a newly designed double mismatch primer set.

Development of an SNP set for marker-assisted breeding based on the genotyping-by-sequencing of elite inbred lines in watermelon (수박 엘리트 계통의 GBS를 통한 마커이용 육종용 SNP 마커 개발)

  • Lee, Junewoo;Son, Beunggu;Choi, Youngwhan;Kang, Jumsoon;Lee, Youngjae;Je, Byoung Il;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.242-249
    • /
    • 2018
  • This study was conducted to develop an SNP set that can be useful for marker-assisted breeding (MAB) in watermelon (Citrullus. lanatus L) using Genotyping-by-sequencing (GBS) analysis of 20 commercial elite watermelon inbreds. The result of GBS showed that 77% of approximately 1.1 billion raw reads were mapped on the watermelon genome with an average mapping region of about 4,000 Kb, which indicated genome coverage of 2.3%. After the filtering process, a total of 2,670 SNPs with an average depth of 31.57 and the PIC (Polymorphic Information Content) value of 0.1~0.38 for 20 elite inbreds were obtained. Among those SNPs, 55 SNPs (5 SNPs per chromosome that are equally distributed on each chromosome) were selected. For the understanding genetic relationship of 20 elite inbreds, PCA (Principal Component Analysis) was carried out with 55 SNPs, which resulted in the classification of inbreds into 4 groups based on PC1 (52%) and PC2 (11%), thus causing differentiation between the inbreds. A similar classification pattern for PCA was observed from hierarchical clustering analysis. The SNP set developed in this study has the potential for application to cultivar identification, F1 seed purity test, and marker-assisted backcross (MABC) not only for 20 elite inbreds but also for diverse resources for watermelon breeding.

Improvement of SNPs detection efficient by reuse of sequences in Genotyping By Sequencing technology (유전체 서열 재사용을 이용한 Genotyping By Sequencing 기술의 단일 염기 다형성 탐지 효율 개선)

  • Baek, Jeong-Ho;Kim, Do-Wan;Kim, Junah;Lee, Tae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2491-2499
    • /
    • 2015
  • Recently, the most popular technique to determine the Genotype, genetic features of individual organisms, is the GBS based on SNP from sequences determined by NGS. As analyzing the sequences by the GBS, TASSEL is the most used program to identify the genotypes. But, TASSEL has limitation that it uses only the partial sequences that is obtained by NGS. We tried to improve the efficiency in use of the sequences in order to solve the limitation. So, we constructed new data sets by quality checking, filtering the unused sequences with error rate below 0.1% and clipping the sequences considering the location of barcode and enzyme. As a result, approximately over 17% of the SNP detection efficiency was increased. In this paper, we suggest the method and the applied programs in order to detect more SNPs by using the disused sequences.