Browse > Article
http://dx.doi.org/10.5010/JPB.2018.45.3.242

Development of an SNP set for marker-assisted breeding based on the genotyping-by-sequencing of elite inbred lines in watermelon  

Lee, Junewoo (Department of Horticultural Bioscience, Pusan National University (PNU))
Son, Beunggu (Department of Horticultural Bioscience, Pusan National University (PNU))
Choi, Youngwhan (Department of Horticultural Bioscience, Pusan National University (PNU))
Kang, Jumsoon (Department of Horticultural Bioscience, Pusan National University (PNU))
Lee, Youngjae (Department of Horticultural Bioscience, Pusan National University (PNU))
Je, Byoung Il (Department of Horticultural Bioscience, Pusan National University (PNU))
Park, Younghoon (Department of Horticultural Bioscience, Pusan National University (PNU))
Publication Information
Journal of Plant Biotechnology / v.45, no.3, 2018 , pp. 242-249 More about this Journal
Abstract
This study was conducted to develop an SNP set that can be useful for marker-assisted breeding (MAB) in watermelon (Citrullus. lanatus L) using Genotyping-by-sequencing (GBS) analysis of 20 commercial elite watermelon inbreds. The result of GBS showed that 77% of approximately 1.1 billion raw reads were mapped on the watermelon genome with an average mapping region of about 4,000 Kb, which indicated genome coverage of 2.3%. After the filtering process, a total of 2,670 SNPs with an average depth of 31.57 and the PIC (Polymorphic Information Content) value of 0.1~0.38 for 20 elite inbreds were obtained. Among those SNPs, 55 SNPs (5 SNPs per chromosome that are equally distributed on each chromosome) were selected. For the understanding genetic relationship of 20 elite inbreds, PCA (Principal Component Analysis) was carried out with 55 SNPs, which resulted in the classification of inbreds into 4 groups based on PC1 (52%) and PC2 (11%), thus causing differentiation between the inbreds. A similar classification pattern for PCA was observed from hierarchical clustering analysis. The SNP set developed in this study has the potential for application to cultivar identification, F1 seed purity test, and marker-assisted backcross (MABC) not only for 20 elite inbreds but also for diverse resources for watermelon breeding.
Keywords
Cultivar identification; GBS; MABC; SNP; watermelon;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kiruthika S, Padmanabha BV (2018) Analysis of hybrid purity in watermelon using microsatellite marker in comparison with field GOT. Int J Res Eng Technol 5(4):761-763
2 Korean seed association (2017). Retrieved from http://www.kosaseed.or.kr
3 Kwon YS, Hong JH, Kim DH, Kim DH (2015) Use of microsatellite markers derived from genomic and expressed sequence tag (EST) data to identify commercial watermelon cultivars. HST 33(5):737-750. doi: 10.7235/hort.2015.15045   DOI
4 Lee SJ, Shin JS, Park KW, Hong YP (1996) Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanantus (Thunb.) Mansf.] germplasm. Theor Appl Genet 92(6):719-725. doi: 10.1007/BF00226094   DOI
5 Levi A, Thomas CE (2007) DNA markers from different linkage regions of watermelon genome useful in differentiating among closely related watermelon genotypes. HortScience 42(2):210-214
6 Nagy S, Poczai P, CernAk I, Gorji AM, Hegedus G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics 50(9-10):670-672. doi: 10.1007/s10528-012-9509-1   DOI
7 Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Mackill DJ (2007) A markerassisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115(6):767-776. doi: 10.1007/s00122-007-0607-0   DOI
8 Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Reddy UK (2014) Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 15(1). doi: 10.1186/1471-2164-15-767   DOI
9 Park GR, Kim JY, Jin BK, Yang HB, Park SW, Kang SC, Park YH (2018) Genome-wide sequence variation in watermelon inbred lines and its implication for marker-assisted breeding. HST 36(2):280-291
10 Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Ricciardi L (2017) Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics 18(1):1-10. doi: 10.1186/s12864-016-3429-0   DOI
11 Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, Karol A (2014) High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3 (Bethesda) 4(11):2219-2230. doi: 10.1534/g3.114.012815   DOI
12 Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2(3):195-212. doi: 10.9787/PBB.2014.2.3.195   DOI
13 VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414-4423. doi: 10.3168/jds.2007-0980   DOI
14 Wang J, Lin M, Crenshaw A, Hutchinson A, Hicks B, Yeager M, Ramakrishnan R (2009) High-throughput single nucleotide polymorphism genotyping using nanofluidic dynamic arrays. BMC Genomics 10(1):1-13. doi: 10.1186/1471-2164-10-561   DOI
15 Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, Kilian A (2016) Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genet Resour 14(03):226-233. doi: 10.1017/S1479262115000659   DOI
16 Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-bysequencing (GBS) approach for high diversity species. PLoS One 6(5):1-10. doi: 10.1371/journal.pone.0019379   DOI
17 Bertrand CY, David J (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557-572. doi: 10.1098/rstb.2007.2170   DOI
18 Che K, Liang C, Wang Y, Jin D, Wang B, Xu Y, Zhang H (2003) Genetic assessment of watermelon germplasm using the AFLP technique. Science 38(1):81-84
19 Choi YM, Hwang JH, Kim KW, Kang JS, Choi YH, Son BG, Park YH (2012) Application of EST-SSR Marker for purity test of watermelon F1 cultivars. J Agric Life Sci 46(4):85-92
20 Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2-9. doi: 10.1111/j.1467-7652.2009.00459.x   DOI
21 Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9(2). doi: 10.1371/journal.pone.0090346   DOI
22 Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145-161. doi: 10.1007/s11032-009-9359-7   DOI
23 Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29(2):237-254. doi: 10.1080/13102818.2014.995920   DOI
24 He J, Zhao X, Laroche A, Lu ZX, Liu HK, Li Z (2014) Genotypingby-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. doi: 10.3389/fpls.2014.00484   DOI
25 Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. &Nakai). Genome 40(4):433-441. doi: 10.1139/g97-058   DOI