• Title/Summary/Keyword: Genotype phenotype

Search Result 147, Processing Time 0.025 seconds

The etiologies of neonatal cholestasis (신생아 담즙정체의 원인질환)

  • Ko, Jae Sung;Seo, Jeong Kee
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.835-840
    • /
    • 2007
  • Any infant noted to be jaundiced at 2 weeks of age should be evaluated for cholestasis with measurement of total and direct serum bilirubin. With the insight into the clinical phenotype and the genotype-phenotype correlations, it is now possible to evaluate more precisely the neonate who presents with conjugated hyperbilirubinemia. Testing should be performed for the specific treatable causes of neonatal cholestasis, specifically sepsis, galactosemia, tyrosinemia, citrin deficiency and endocrine disorders. Biliary atresia must be excluded. Low levels of serum gamma-glutamyl transferase in the presence of cholestasis should suggest progressive familial intrahepatic cholestasis type 1, 2, or arthrogryposis- renal dysfunction-cholestasis syndrome. If the serum bile acid level is low, a bile acid synthetic defect should be considered. Molecular genetic testing and molecular-based diagnostic strategies are in evolution.

Simulation study on the estimation of multinomial proportions

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.411-417
    • /
    • 2012
  • In this paper, we consider the estimation of multinomial proportions. Multinomial distribution is the most important multivaritate distribution. Estimation of multinomial parameters for multinomial distribution is widely applicable to many practical research areas including genetics. We investigated the properties of several frequency substitution estimates and derived the maximum likelihood estimate of multinomial proportions of Hardy Weinberg proportions. Phenotype and genotype frequencies of allele are used to the estimation of multinomial proportions. These estimates are then analyzed via numerical data. Small sample Monte Carlo simulation is conducted to compare considered estimates of multinomial proportions.

Allelic Frequencies of 20 Visible Phenotype Variants in the Korean Population

  • Lim, Ji Eun;Oh, Bermseok
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • The prediction of externally visible characteristics from DNA has been studied for forensic genetics over the last few years. Externally visible characteristics include hair, skin, and eye color, height, and facial morphology, which have high heritability. Recent studies using genome-wide association analysis have identified genes and variations that correlate with human visible phenotypes and developed phenotype prediction programs. However, most prediction models were constructed and validated based on genotype and phenotype information on Europeans. Therefore, we need to validate prediction models in diverse ethnic populations. In this study, we selected potentially useful variations for forensic science that are associated with hair and eye color, iris pattern, and facial morphology, based on previous studies, and analyzed their frequencies in 1,920 Koreans. Among 20 single nucleotide polymorphisms (SNPs), 10 SNPs were polymorphic, 6 SNPs were very rare (minor allele frequency < 0.005), and 4 SNPs were monomorphic in the Korean population. Even though the usability of these SNPs should be verified by an association study in Koreans, this study provides 10 potential SNP markers for forensic science for externally visible characteristics in the Korean population.

MC1R Genotypes, Coat Color, and Muzzle Phenotype Variation in Korean Native Brindle Cattle (MC1R 유전자의 유전자형과 칡소의 모색 발현 및 비경색 분포에 관한 연구)

  • Park, Jae-Hee;Lee, Hae-Lee;Kim, Yong-Su;Kim, Jong-Gug
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.255-265
    • /
    • 2012
  • The objectives of this study were to investigate MC1R genotype, coat color, and muzzle phenotype variationsin the Korean native brindle cattle (KNBC) maintaining family lines and to establish the mating system for increased brindle coat color appearance. KNBC with genotype and phenotype records were selected as experimental animals. The relationship between melanocortin 1 receptor (MC1R) genotypes, verified by PCR-RFLP, and brindle coat color appearance was determined. Fragments of the MC1R gene amplified by PCR were digested with MspI and RFLP was determined. KNBC had $E^+E^+$, $E^+e$, and ee genotypes. The $E^+e$ genotype was most common with 65%, compared to $E^+E^+$ (33.33%), or ee (1.67%). When the sire had $E^+e$ genotype and the dam had $E^+E^+$ genotype, and both of them had the whole body-brindle coat color, all of their offspring (4/4) had whole body-brindle coat color. When the sire had $E^+E^+$ genotype and the dam had $E^+e$ genotype, and both had whole body-brindle coat color, 44.44% (4/9) of the offspring had whole body-brindle coat color. The mating between the sires and dams with these two genotypes with whole body-brindle coat color may have the highest whole body-brindle coat color appearance in their offspring. Muzzle grades 3 or 4 were more common than other muzzle grades. This is the first report indicating the segregation of MC1R genotypes and the inheritance of coat color through family lines in KNBC. The mating system proposed from this study may increase the possibility of brindle coat color appearance in KNBC.

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Iron Nutritional Status by ALAD Genotype and Intervention Study for Rural Area Residents (농촌 여성들의 ALAD 유전형질별 철분영양상태와 철분제 섭취에 따른 영양상태의 변화)

  • Kim, Hee-Seon;Kim, Min-Kyung;Kim, So-Hee;Lee, Sung-Soo;Lee, Byung-Kook
    • Korean Journal of Community Nutrition
    • /
    • v.11 no.6
    • /
    • pp.771-778
    • /
    • 2006
  • Previous studies have suggested that delta-aminolevulinic acid dehydratase (ALAD) phenotype differently affect mineral metabolism. The objective of this study was to determine the effectiveness of 6-month iron supplementation as syrup of NaFeEDTA in improvement of iron status according to ALAD genotype. One hundred thirty adult women living in rural areas of Asan were provided NaFeEDTA syrup once a week for 6 months at the dose of 64mg Fe/week. Three hundred control subjects were observed during the study period. Fasting blood was obtained for analyzing hemoglobin (Hb) and zinc protophorphyrin (ZPP) and serum was analyzed for ferritin, iron and total iron capacity (TIBC) levels before and after iron supplementation. Ninety percent of ALAD 1-1 (ALAD1) and 10% of ALAD 1-2 (ALAD2) genotype were observed in the control group. However in the intervention group, 98% showed ALAD1 while only 2% was ALAD2, which is significantly lower proportions of ALAD2 compared to the control group (p<0.01). The iron status of Intervention group significantly improved except for ferritin and TIBC regardless or ALAD genotype, while the control group did not show any changes in iron status except for ZPP. ZPP concentration of the control group significantly increased in both ALAD1 and 2 while the intervention group showed significantly decreased ZPP after supplementation in ALAD1. Iron supplementation in the form of NaFeEDTA seems to be effective in reduction of ZPP levels although ALAD2 did not show significant changes due to the small number. However, it is difficult to make a conclusion from these results, and more specified further investigation is needed with more participants.

Relationships between Dapsone Metabolic Activity and Polymorphism of Arylamine N-acetyltransferase 2 in the F2 Hybrid Rats (잡종 2세대(Fischer 계: Wistar-Kyoto 계) 흰쥐에서 Arylamine N-acetyltransferase 2의 다형성과 Dapsone의 대사능과의 연관성에 대한 연구)

  • 신인철;강주섭;고현철;이창호;안동춘;백두진;심성한;조율희
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • The arylamine N-acetyltransferases (NATs) are a family of enzymes that N-acetylate mylhydrazines and arylamines through transfer of an acetyl group from acetyl coenzyme A. This activity was found to vary among individuals as a Mendalian trait and the basis of the genetic differences in human NAT activity is one of the best of the genetic studied examples of pharmacogenetic variation. The classical N-acetylation polymorphism is regulated at the NAT2 locus, which segregates individuals into rapid, intermediate, and slow acetylator phenotypes. In this study, the relationship between NAT2 activity phenotype using HPLC:UV assay for the determination of dapsone and monoacetyldapsone in plasma and NAT2 genotype by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) was investigated in the F2 hybrid (Fischer 344 vs Wistar-Kyoto) rats. Three Common mutant alleles at the NAT2 gene locus have been identified in the F2 generation progeny of Fischer 344 rats as raid acetylator and Wistar-Kyoto rats as slow acetylator segregated into three modes (low, intermediates, and high) with simple Mendelian inheritance. The metabolic activity of NAT2 of the intermediate and rapid acetylators is significant1y greater than slow acetylator, but the metabolic activity of rapid acetylator is not significantly different from Intermediate type. Therefore, we could observe that complete trimodal NAT2 genotypic alleles and incomplete trimodal NAT2 metabolic phenotypic distribution in tile F2 hybrid rats. These observations suggest that the relationships between NAT2 genotype and metabolic phenotype exists and F2 hybrid (Fischer 344: Wistar-Kyoto) animal models about NAT2 polymorphism might be applied in the toxicity and pharmacogenetic studies of arylamine drugs and carcinogens.

Phenotypic and Genotypic Differences of the Vancomycin-Resistant Enterococcus faecium Isolates from Humans and Poultry in Korea

  • Oh, Jae-Young;An, Seung-Hun;Jin, Jong-Sook;Lee, Yoo-Chul;Cho, Dong-Teak;Lee, Je-Chul
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.466-472
    • /
    • 2007
  • A total of 98 vancomycin-resistant Enterococcus faecium (VREF) isolates (58 isolates from patients and 40 isolates from poultry) were compared based on their antimicrobial susceptibility, Tn1546 element organization, and pulsed-field gel electrophoresis (PFGE) patterns. This comparison aided in determining the relationships between the groups of isolates. All the VREF isolates harbored the vanA gene; however, 29 (29.6%) of the isolates exhibited the VanB phenotype-vanA genotype. Furthermore, the VREF isolates from humans and poultry exhibited distinct antimicrobial resistance patterns. The PCR mapping of the Tn1546 elements exhibited 12 different transposon types (A to L). The VREF isolates of poultry were classified into types A to D, whereas the human isolates were classified into types E to L. A PFGE analysis demonstrated a high degree of clonal heterogeneity in both groups of isolates; however, the distinct VREF clones appeared in each group of isolates. The deletion of the vanX-vanY genes or insertion of IS1216V in the intergenic region from the vanX-vanY genes is directly associated with the incongruence of the VanB phenotype-vanA genotype in human VREF isolates. These data suggest that the VREF isolates exhibit distinct phenotypic and genotypic traits according to their origins, which suggests that no evidence exists to substantiate the clonal spread or transfer of vancomycin resistance determinants between humans and poultry.

Primary Hyperoxaluria in Korean Pediatric Patients

  • Choe, Yunsoo;Lee, Jiwon M.;Kim, Ji Hyun;Cho, Myung Hyun;Kim, Seong Heon;Lee, Joo Hoon;Park, Young Seo;Kang, Hee Gyung;Ha, Il Soo;Cheong, Hae Il
    • Childhood Kidney Diseases
    • /
    • v.23 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • Background: Primary hyperoxaluria (PH), a rare inborn error of glyoxylate meta bolism causing overproduction of oxalate, is classified into three genetic subgroups: type 1-3 (PH1-PH3) caused by AGXT, GRHPR, and HOGA1 gene mutations, respectively. We performed a retrospective case series study of Korean pediatric patients with PH. Methods: In total, 11 unrelated pediatric patients were recruited and their phenotypes and genotypes were analyzed by a retrospective review of their medical records. Results: Mutational analyses revealed biallelic AGXT mutations (PH1) in nine patients and a single heterozygous GRHPR and HOGA1 mutation in one patient each. The c.33dupC was the most common AGXT mutation with an allelic frequency of 44%. The median age of onset was 3 months (range, 2 months-3 years), and eight patients with PH1 presented with end stage renal disease (ESRD). Patients with two truncating mutations showed an earlier age of onset and more frequent retinal involvement than patients with one truncating mutation. Among eight PH1 patients presenting with ESRD, five patients were treated with intensive dialysis followed by liver transplantation (n=5) with/without subsequent kidney transplantation (n=3). Conclusion: Most patients presented with severe infantile forms of PH. Patients with two truncating mutations displayed more severe phenotypes than those of patients with one truncating mutation. Sequential liver and kidney transplantation was adopted for PH1 patients presenting with ESRD. A larger nation-wide multicenter study is needed to confirm the genotype-phenotype correlations and outcomes of organ transplantation.