• Title/Summary/Keyword: Genotoxic

검색결과 274건 처리시간 0.02초

Early Activation of Apoptosis and Caspase-independent Cell Death Plays an Important Role in Mediating the Cytotoxic and Genotoxic Effects of WP 631 in Ovarian Cancer Cells

  • Gajek, Arkadiusz;Denel-Bobrowska, Marta;Rogalska, Aneta;Bukowska, Barbara;Maszewski, Janusz;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8503-8512
    • /
    • 2016
  • The purpose of this study was to provide a detailed explanation of the mechanism of bisanthracycline, WP 631 in comparison to doxorubicin (DOX), a first generation anthracycline, currently the most widely used pharmaceutical in clinical oncology. Experiments were performed in SKOV-3 ovarian cancer cells which are otherwise resistant to standard drugs such as cis-platinum and adriamycin. As attention was focused on the ability of WP 631 to induce apoptosis, this was examined using a double staining method with Annexin V and propidium iodide probes, with measurement of the level of intracellular calcium ions and cytosolic cytochrome c. The western blotting technique was performed to confirm PARP cleavage. We also investigated the involvement of caspase activation and DNA degradation (comet assay and immunocytochemical detection of phosphorylated H2AX histones) in the development of apoptotic events. WP 631 demonstrated significantly higher effectiveness as a pro-apoptotic drug than DOX. This was evident in the higher levels of markers of apoptosis, such as the externalization of phosphatidylserine and the elevated level of cytochrome c. An extension of incubation time led to an increase in intracellular calcium levels after treatment with DOX. Lower changes in the calcium content were associated with the influence of WP 631. DOX led to the activation of all tested caspases, 8, 9 and 3, whereas WP 631 only induced an increase in caspase 8 activity after 24h of treatment and consequently led to the cleavage of PARP. The lack of active caspase 3 had no outcome on the single and double-stranded DNA breaks. The obtained results show that WP 631 was considerably more genotoxic towards the investigated cell line than DOX. This effect was especially visible after longer times of incubation. The above detailed studies indicate that WP 631 generates early apoptosis and cell death independent of caspase-3, detected at relatively late time points. The observed differences in the mechanisms of the action of WP631 and DOX suggest that this bisanthracycline can be an effective alternative in ovarian cancer treatment.

X-선 조사식품 4종의 유전독성학적 안전성 평가 (Genotoxicological Safety Evaluation of X-ray Irradiated Four Foods)

  • 정다운;황옥화;송범석;변명우;강일준
    • 한국식품영양과학회지
    • /
    • 제43권10호
    • /
    • pp.1588-1593
    • /
    • 2014
  • 본 연구는 방사선 조사식품에 대한 소비자들의 수용성을 증대하고, 감마선조사의 대체기술로 X-선 조사의 상용화를 확대할 목적으로 30 kGy X-선 조사식품 4종(닭고기, 전란분말, 건파, 후추)의 유전독성학적 안전성 평가를 실행하였다. Salmonella Typhimurium TA98, TA100, TA1535 및 TA1537에 대한 X-선 조사식품 4종의 복귀변이 집락 수를 조사한 결과, 대사 활성계 도입 및 부재 시 모두 시험 적용 농도인 $40{\sim}5,000{\mu}g/plate$의 범위에서 복귀변이 집락 수의 농도 의존적인 증가 혹은 감소를 보이지 않았다. 그리고 포유류 배양세포를 이용한 염색체 이상 시험에서도 X-선 조사식품 4종은 $625{\sim}5,000{\mu}g/mL$의 시험 적용 농도에서 염색체 이상 유발능이 5% 미만이어서 염색체 이상을 유발하지 않는 것으로 나타났다. 또한 설치류 망상적혈구를 이용하여 X-선 조사식품 4종의 소핵 형성 시험을 수행한 결과 시험 적용 농도인 250~2,000 mg/kg의 범위에서 소핵을 가진 망상적혈구의 출현율이 음성대조군과 유의한 차이를 나타내지 않아 소핵을 유발하지 않음을 확인하였다. 이상의 결과를 바탕으로 위해 분석 결과 30 kGy X-선 조사식품 4종(닭고기, 전란분말, 건파, 후추)은 본 시험조건에서 유전 독성이 없는 것으로 나타났다.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.

Gene Expression Profiling of Genotoxicity Induced by MNNG in TK6 Cell

  • Suh, Soo-Kyung;Kim, Tae-Gyun;Kim, Hyun-Ju;Koo, Ye-Mo;Lee, Woo-Sun;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.98-106
    • /
    • 2007
  • Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. In this study, we investigated to examine gene expression profiles and genotoxic response in TK6 cells treated with DNA damaging agents MNNG (N-methyl-N'-nitrosoguanidine) and hydrogen peroxide $(H_2O_2)$. We extracted total RNA in three independent experiments and hybridized cRNA probes with oligo DNA chip (Applied Biosystems Human Genome Survey Microarray). We analyzed raw signal data with R program and AVADIS software and identified a number of deregulated genes with more than 1.5 log-scale fold change and statistical significancy. We indentified 14 genes including G protein alpha 12 showing deregulation by MNNG. The deregulated genes by MNNG represent the biological pathway regarding MAP kinase signaling pathway. Hydrogen peroxide altered 188 genes including sulfiredoxins. These results show that MNNG and $H_2O_2$ have both uniquely regulated genes that provide the potential to serve as biomarkers of exposure to DNA damaging agents.

화학사고 주변 지역 거주자의 보건환경 관리를 위한 건강위해성 평가 방법 개발에 관한 연구 (A Study on the Development of a Health Risk Assessment Method for the Management of the Health Environment of Residents Living Around Areas Affected by Chemical Accidents)

  • 박시현;박세정;박태현;윤단기;정종현;강성규;이동수;서영록;안연순;이철민
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2018
  • Objectives: This research is part of a study to be conducted over five years starting from 2017 by the Ministry of Environment on the development of technologies to evaluate the impact of chemical accidents on the human body. Methods: For this research, a five-stage specific study method was developed. Results: In brief, the developed health risk assessment method can be summarized as follows. First, a health risk assessment system was built based on the guidelines set forth by the USA NRC/NAS. Second, based on the disease manifestation theory, the health risk assessment method was divided into 1) a carcinogenic health risk assessment method focused on all carcinogens except non-genotoxic carcinogens and 2) a non-carcinogenic health risk assessment method focused on noncarcinogens including non-genotoxic carcinogens. Third, the detailed contents of the health risk assessment method were developed in four stages(hazard identification, dose-response assessment, exposure assessment, and risk determination) through theoretical consideration of the assessment of the level of health risk related to chemical exposure. Finally, a health risk assessment methodology, classified into stages to address acute, subacute/subchronic, and chronic conditions was developed after considering the physicochemical behavior of hazardous chemicals upon implementation of countermeasures after a chemical accident. Conclusions: A method to evaluate the health risks related to toxic chemicals generated by chemical accidents was developed. This study was performed with the purpose of developing a mathematical health risk assessment method to evaluate the health effects of exposure to hazardous chemicals upon implementation of emergency countermeasures after chemical accidents.

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

A Nudix Hydrolase Protein, Ysa1, Regulates Oxidative Stress Response and Antifungal Drug Susceptibility in Cryptococcus neoformans

  • Lee, Kyung-Tae;Kwon, Hyojeong;Lee, Dohyun;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.52-58
    • /
    • 2014
  • A nucleoside diphosphate-linked moiety X (Nudix) hydrolase-like gene, YSA1, has been identified as one of the gromwell plant extract-responsive genes in Cryptococcus neoformans. Ysa1 is known to control intracellular concentrations of ADP-ribose or O-acetyl-ADP-ribose, and has diverse biological functions, including the response to oxidative stress in the ascomycete yeast, Saccharomyces cerevisiae. In this study, we characterized the role of YSA1 in the stress response and adaptation of the basidiomycete yeast, C. neoformans. We constructed three independent deletion mutants for YSA1, and analyzed their mutant phenotypes. We found that ysa1 mutants did not show increased sensitivity to reactive oxygen species-producing oxidative damage agents, such as hydrogen peroxide and menadione, but exhibited increased sensitivity to diamide, which is a thiol-specific oxidant. Ysa1 was dispensable for the response to most environmental stresses, such as genotoxic, osmotic, and endoplasmic reticulum stress. In conclusion, modulation of YSA1 may regulate the cellular response and adaptation of C. neoformans to certain oxidative stresses and contribute to the evolution of antifungal drug resistance.

Peroxisome Proliferators and Hepatocarcinogenesis

  • Hong, Jin-Tae
    • 한국환경성돌연변이발암원학회지
    • /
    • 제17권2호
    • /
    • pp.78-91
    • /
    • 1997
  • Peroxisome is a single membrane-bounded organelle found in hepatic parenchymal cells and kidney tubular epithelial cells. A number of enzymes exist in peroxisome contributing to anabolic and catabolic peroxisomal functions. Extramitochontriai $\beta$-oxidation of fatty acid is a major function of peroxisome. Peroxisomes can be proliferated by many structually unrelated compounds such as hypolipidemic drugs, plasticizers, pesticides, some pharmaceutical agents and high fat diet. These chemicals, called peroxisome proliferators, act via the peroxisome proliferator activated receptor, to induce peroxisome proliferation, hepatomegaly and hepatocellular carcinoma in rodent. The clear mechanisms of peroxisome proliferator-induced hepatocarcinogenesis have been not demonstrated. Since they are not genotoxic, biochemical changes or changes in gene expressions may be involved. A free radical theory has been suggested based on the finding of oxidative damages of macromolecules by hydrogen peroxide released in the peroxisomal $\beta$-oxidation of fatty acid. Increased cell proliferation by a peroxisome proliferator has been also thought to be an important factor in the hepatocarcinogenesis as suggested in other cases of nongenotoxic carcinogenesis. The alternation of eicosanoid concentrations by peroxisome proliferators may be important in the peroxisome proliferator-induced hepatocarcinogenesis since peroxisome proliferators decrease the concentration of eicosanoids, and the peroxisome proliferator ciprofibrate-eicosanoid combination is comitogenic and costimulates some mitogenic signals in hepatocytes. All of proposed mechanisms should be considered in the peroxisome prolifrator-induced hepatocarcinogenesis.

  • PDF

정상사람림프구와 HL-60 cell에서 목향의 세포독성과 백혈병세포 분화효과에 관한 연구 (Cytotoxicity in HL-60 cells and human lymphocytes and effect of leukemia cell differentiation induced by Saussureae Radix extract)

  • 이영준;강수진;구세광
    • 대한본초학회지
    • /
    • 제26권2호
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : This study was focused to investigate the toxicity of Saussurea lappa (SL) extracts in HL-60 cells and human lymphocytes. We also examined the differentiation effect of SL against leukemia cells. Methods : For examining the toxicity of SL, cytokinesis-block micronucleus (CBMN) assay and single cell gel eletrophoresis (SCGE) assay were used in present study. The cell differentiation effect of SL was evaluated by nitroblue tetrazolium (NBT) reduction assay. Results : The inhibition of cell growth in HL-60 cells was observed in a dose-dependant manner after SL treatment for 24 h. According to SCGE assay, HL-60 cells treated with SL increased DNA damage at $10{\mu}g/m{\ell}$, while DNA damage was induced by 0.1, 1, $10{\mu}g/m{\ell}$ concentration of SL in human lymphocytes. Our results indicated that SL have no genotoxic effect in HL-60 cells and human lymphocytes. Additionally, the differentiation effect was induced in $1{\mu}g/m{\ell}$ SL-treated HL-60 cells. Conclusions : From above results it is suggested that SL could be beneficial for the preparation of the useful agent for treating leukemia.