• Title/Summary/Keyword: Genomic surveillance

Search Result 8, Processing Time 0.023 seconds

Genomic epidemiology and surveillance of zoonotic viruses using targeted next-generation sequencing (표적화 차세대염기서열분석법을 이용한 인수공통 바이러스의 유전체 역학과 예찰)

  • Seonghyeon Lee;Seung-Hwan Baek;Shivani Rajoriya;Sara Puspareni;Won-Keun Kim
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.93-106
    • /
    • 2023
  • Emerging and re-emerging zoonotic viruses become critical public health, economic, societal, and cultural burdens. The Coronavirus disease-19 (COVID-19) pandemic reveals needs for effective preparedness and responsiveness against the emergence of variants and the next virus outbreak. The targeted next-generation sequencing (NGS) significantly contributes to the acquisition of viral genome sequences directly from clinical specimens. Using this advanced NGS technology, the genomic epidemiology and surveillance play a critical role in identifying of infectious source and origin, tracking of transmission chains and virus evolution, and characterizing the virulence and developing of vaccines during the outbreak. In this review, we highlight the platforms and preparation of targeted NGS for the viral genomics. We also demonstrate the application of this strategy to take advantage of the responsiveness and prevention of emerging zoonotic viruses. This article provides broad and deep insights into the preparedness and responsiveness for the next zoonotic virus outbreak.

Genomic epidemiology for microbial evolutionary studies and the use of Oxford Nanopore sequencing technology (미생물 진화 연구를 위한 유전체 역학과 옥스포드 나노포어 염기서열분석 기술의 활용)

  • Choi, Sang Chul
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.188-199
    • /
    • 2018
  • Genomic epidemiology exploits various basic microbial research areas. High-throughput sequencing technologies dramatically have been expanding the number of microbial genome sequences available. Abundant genomic data provide an opportunity to perform strain typing more effectively, helping identify microbial species and strains at a higher resolution than ever before. Genomic epidemiology needs to find antimicrobial resistance genes in addition to standard genome annotations. Strain typing and antimicrobial resistance gene finding are static aspects of genomic epidemiology. Finding which hosts infected which other hosts requires the inference of transient transmission routes among infected hosts. The strain typing, antimicrobial resistance gene finding, and transmission tree inference would allow for better surveillance of microbial infectious diseases, which is one of the ultimate goals of genomic epidemiology. Among several high-throughput sequencing technologies, genomic epidemiology will benefit from the more portability and shorter sequencing time of the Oxford Nanopore Technologies's MinION, the third-generation sequencing technology. Here, this study reviewed computational methods for quantifying antimicrobial resistance genes and inferring disease transmission trees. In addition, the MinION's applications to genomic epidemiology were discussed.

A narrative review of genomic characteristics, serotype, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide

  • Ratna Fathma Sari;Fadilah Fadilah;Yustinus Maladan;Rosantia Sarassari;Dodi Safari
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • This narrative review describes genomic characteristic, serotyping, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide (CPS). CPS is a primary virulence factor of S. pneumoniae. The genomic characteristics of S. pneumoniae CPS, including the role of biosynthetic gene and genetic variation within cps (capsule polysaccharide) locus which may lead to serotype replacement are still being investigated. One hundred unique serotypes of S. pneumoniae have been identified through various methods of serotyping using phenotypic and genotypic approach. The advantages and limitations of each method are various, emphasizing the need for accurate and comprehensive serotyping for effective disease surveillance and vaccine targeting. In addition, we elaborate the critical role of CPS in vaccine development by providing an overview of immunogenicity, ongoing research of pneumococcal vaccines, and the impact on disease burden.

Identification of African swine fever virus genomic DNAs in wild boar habitats within outbreak regions in South Korea

  • Lee, Kyung-Lak;Choi, Yongjun;Yoo, Jongchan;Hwang, Jusun;Jeong, Hyun-Gi;Jheong, Weon-Hwa;Kim, Seon-Hee
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.28.1-28.6
    • /
    • 2021
  • An African swine fever (ASF) outbreak in wild boars was first reported on October 2, 2019, in South Korea. Since then, additional cases were reported in South Korea's border areas. We here report the identification of ASF virus (ASFV) DNAs from two out of eight environmental abiotic matter samples collected from areas where ASF-positive wild boar carcasses were found. Comparative genomic investigations suggested that the contaminating ASFV DNAs originated from the wild boar whose carcass had been found near the positive sample sites. This is the first report on the identification of ASF viral material in wild boar habitats.

Development of a Selective Medium for Surveillance of Fusarium Head Blight Disease

  • Hosung Jeon;Jung Wook Yang;Donghwan Shin;Donggyu Min;Byung Joo Kim;Kyunghun Min;Hokyoung Son
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

Geographical distribution and molecular epidemiology of the foot-and-mouth disease viruses of major groups (주요 혈청형 구제역바이러스의 발생분포와 분자역학적 분석)

  • Park, Jong-Hyeon;Lee, Kwang-Nyeong;Kim, Su-Mi;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Foot-and-mouth disease (FMD) virus exists in seven serotypes and is known to be a highly contagious disease that is hard to eradicate from the world. The O, A, Asia1 and SAT2 serotypes commonly infected cattle, sheep and goats during 2007~2009 throughout the world. In particular, the outbreak of the Asia1 serotype in China appeared in all areas from 2005 and is still present. Surprisingly, in 2009, Taiwan reported the first outbreak of the type O serotype since 2001. Then type A appeared in China for the first time since the early 1960s. The virus shows a close relationship to the viruses from Southeast Asia suggesting one or more recent introductions into China in the OIE reports. Recently the subtype of A/Iran05 spread to nearby countries exhibiting genomic evolution. The use of molecular epidemiology is an important tool in understanding and consequently controlling the FMD virus. The phylogenetic analysis with VP1 gene was especially useful for molecular epidemiological studies and showed the same pattern which matches with serotype classification. This paper describes basic information about the disease, and the serotype-specific characteristics and evolution to perform molecular epidemiological analysis. Furthermore, we show the importance of the genetic evolution on the FMD serotypes in global surveillance and molecular epidemiology of FMD for outbreak investigation.

Genetic Characteristics of Extended-Spectrum Beta-Lactamase-Producing Salmonella Isolated from Retail Meats in South Korea

  • Haiseong Kang;Hansol Kim;Hyochin Kim;Ji Hye Jeon;Seokhwan Kim;Yongchjun Park;Soon Han Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1101-1108
    • /
    • 2024
  • Earlier studies have validated the isolation of extended-spectrum beta-lactamase-producing Salmonella (ESBL-Sal) strains from food. While poultry is recognized as a reservoir for Salmonella contamination, pertinent data regarding ESBL-Sal remains limited. Consequently, the Ministry of Food and Drug Safety has isolated Salmonella spp. from retail meat and evaluated their antibiotic susceptibility and genetic characteristics via whole-genome sequencing. To further elucidate these aspects, this study investigates the prevalence, antibiotic resistance profiles, genomic characteristics, and homology of ESBL-Sal spp. obtained from livestock-derived products in South Korean retail outlets. A total of 653 Salmonella spp. were isolated from 1,876 meat samples, including 509 beef, 503 pork, 555 chicken, and 309 duck samples. The prevalence rates of Salmonella were 0.0%, 1.4%, 17.5%, and 28.2% in the beef, pork, chicken, and duck samples, respectively. ESBL-Sal was exclusively identified in poultry meat, with a prevalence of 1.4% in the chicken samples (8/555) and 0.3% in the duck samples (1/309). All ESBL-Sal strains carried the blaCTX-M-1 gene and exhibited resistance to ampicillin, ceftiofur, ceftazidime, nalidixic acid, and tetracycline. Eight ESBL-Sal isolates were identified as S. Enteritidis with sequence type (ST) 11. The major plasmid replicons of the Enteritidis-ST11 strains were IncFIB(S) and IncFII(S), carrying antimicrobial resistance genes (β-lactam, tetracycline, and aminoglycoside) and 166 virulence factor genes. The results of this study provide valuable insights for the surveillance and monitoring of ESBL-Sal in South Korean food chain.

Development of real-time PCR for rapid detection of Mycobacterium bovis DNA in cattle lymph nodes and differentiation of M. bovis and M. tuberculosis (소 림프절에서 Mycobacterium bovis DNA의 신속 검출과 M. bovis와 M. tuberculosis 감별을 위한 real-time PCR 개발)

  • Koh, Ba-Ra-Da;Jang, Young-Boo;Ku, Bok-Kyung;Cho, Ho-Seong;Bae, Seong-Yeol;Na, Ho-Myung;Park, Seong-Do;Kim, Yong-Hwan;Mun, Yong-Un
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 2011
  • Mycobacterium bovis, a member of the M. tuberculosis complex (MTC), is the causative agent of bovine tuberculosis. Detection of M. bovis and M. tuberculosis using conventional culture- and biochemical-based assays is time-consuming. Therefore, a simple and sensitive molecular assay for rapid detection would be of great help in specific situations such as faster diagnosis of bovine tuberculosis (bTB) infection in the abattoirs. We developed a novel multiplex real-time PCR assay which was applied directly to biological samples with evidence of bTB and it was allowed to differentiate between M. bovis and M. tuberculosis. The primers and TaqMan probes were designed to target the IS1081 gene, the multi-copy insertion element in the MTC and the 12.7-kb fragment which presents in M. tuberculosis, not in the M. bovis genome. The assay was optimized and validated by testing 10 species of mycobacteria including M. bovis and M. tuberculosis, and 10 other bacterial species such as Escherichia coli, and cattle lymph nodes (n=113). The tests identified 96.4% (27/28) as M. bovis from the MTC-positive bTB samples using conventional PCR for specific insertion elements IS1081. And MTC-negative bTB samples (n=85) were tested using conventional PCR and the real-time PCR. When comparative analyses were conducted on all bovine samples, using conventional PCR as the gold standard, the relative accuracy of real-time PCR was 99.1%, the relative specificity was 100%, and the agreement quotient (kappa) was 0.976. The detection limits of the real-time PCR assays for M. bovis and M. tuberculosis genomic DNA were 10 fg and 0.1 pg per PCR reaction, respectively. Consequently, this multiplex real-time PCR assay is a useful diagnotic tool for the identification of MTC and differentiation of M. bovis and M. tuberculosis, as well as the epidemiologic surveillance of animals slaughtered in abattoir.