• Title/Summary/Keyword: Genomic species

Search Result 589, Processing Time 0.027 seconds

Pathogene Resistance of cotton GST cDNA in Transgenic Scrophularia buergeriana Misrule (목화 Glutathione S-Transferase (GST) 유전자로 형질 전환된 현삼의 내병성 특성)

  • 강원희;임정대;이성호;유창연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.297-304
    • /
    • 2001
  • Scrophularia buergeriana Misrule has been contaminated with various pathogens in condition of field and storage period. This study was carried out for production of multiple stress resistance plant containing disease resistance that CGST gene expressed in transgenic Scrophularia buergeriana Misrule genome. Glutathione S-Transferases (GSTs) detoxify endobiotic and xenobiotic compounds by covalent linking of tripeptide glutathione to hydrophobic substrate. GST enzymes have been identified and characterized in insects, bacteria, and many plant species. A cDNA clone of GST was introduced into Scrophularia buergeriana Miquel by transformation with Agrobacterium tumefaciences. In coporation of the CGST gene into S. buergeriana Misrule was confirmed by PCR analysis of genomic DNA. Influence of exposure to darkness on the regeneration potential and transformation frequence were assessed. The activity of GST in transgenic plants was two times higher than that of non-transgenic plants. As a result of anti-microbe assays, the crude extract protein of transgenic plants showed the antimicrobial effects higher than control plants.

  • PDF

Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae (벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성)

  • Kim, Jeong-Hwan;Kim, Jin-Soo;Jeong, Mi-Yeon;Choi, Woo-Bong
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.343-348
    • /
    • 2009
  • Magnaporthe oryzae, a major cause of rice blast, is one of the most destructive plant fungal pathogens. Secretion of reactive oxygen species (ROS) during the infection phase of plant pathogenic fungus plays a key role in the defense mechanism of a plant. ROS causes oxidative damage and functional modification to the proteins in a pathogenic fungus. Methionine, especially, is a major target of ROS, which oxidizes it to methionine sulfoxide. To survive from the attack of ROS, plant pathogenic fungus has antioxidative systems - one example would be methionine sulfoxide reductase B (MSRB), which reverses the oxidative alteration of methionine to methionine sulfoxide. In the present study, identification and molecular characterization of the MSRB gene in M. oryzae KJ201 were investigated. The MSRB gene was amplified by PCR from the M. oryzae KJ201 genomic DNA. The copy number of MSRB in the genome of M. oryzae KJ201 was identified by Southern blot analysis, which revealed that the gene exists as a single copy. To study the molecular function of an MSRB gene, the expression level of the MSRB gene was assayed with hydrogen peroxide treatment by Northern blot analysis and RT-PCR. The expression of the MSRB gene was increased by treatment of hydrogen peroxide, without significant correlation to hydrogen peroxide concentrations. These results indicate that the MSRB gene in M. oryzae KJ201 could contribute to protection against plant defense compounds such as ROS and offer a novel strategy for the control of rice blast.

Amount of Telomeric DNA on Lymphocytes in Senescence Mouse by Quantitative Fluorescence in situ Hybridization (노화촉진마우스의 텔로미어 함량 분석)

  • Lee, Mi-Rang;Do, Kyoung-Tag;Han, Jyung-Ju;Moon, So-Hyun;Kang, Han-Seok;Kim, Seon-Ku;Shin, Teak-Soon;Lee, Hong-Goo;Hwang, Dae-Yon;Kim, Yong-Gyun;Sohn, Sea-Hwan;Choi, Na-Eun;Kim, Byeong-Woo;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1463-1467
    • /
    • 2009
  • Telomeres, comprised of tandem repeats of TTAGGG sequences, are special nucleoprotein structures that protect and stabilize chromosome ends. These structures form the crux of the telomere concept of aging, senescence and genomic instability. The classic terminal restriction fragment (TRF) analysis to quantify the amount of telomeric DNA is disadvantageous in species containing ultra long telomeres like in mice (100Kb). In this study, we used a more sensitive quantitative fluorescence in situ hybridization (Q FISH) technique to quantify telomeric DNA, and used it as a biological aging marker in mice. 12 litters each of Senescence-Resistant (SAMR1) and -Prone (SAMP1) known as senescence accelerated mouse strains were purchased from Central Lab, Animal Inc. We quantified the amount of telomeric DNA using telomere specific DNA probes on the two strains of male mice at 8 weeks, 18 weeks and 26 weeks of age. The amount of telomeric DNA correlated with aging and age associated changes in body and organ weight between SAMR1 and SAMP1 strains of mice. These data suggest the usefulness of the amount of telomeric DNA as a biological aging marker in human aging studies.

Expressed sequence tag analysis of Meretrix lusoria (Veneridae) in Korea (한국산 백합 (Meretrix lusoria) 의 전사체 분석)

  • Kang, Jung-Ha;Jeong, Ji Eun;Kim, Bong Seok;An, Chel-Min;Kang, Hyun-Sook;Kang, Se-Won;Hwang, Hee Ju;Han, Yeon Soo;Chae, Sung-Hwa;Ko, Hyun-Sook;Lee, Jun-Sang;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The importance of biological resources has been gradually increasing, and mollusks have been utilized as main fishery resources in terrestrial ecosystems. But little is known about genomic and transcriptional analysis in mollusks. This is the first report on the transcriptomic profile of Meretrix lusoria. In this study, we constructed cDNA library and determined 542 of distinct EST sequences composed of 284 singletons and 95 contigs. At first, we identified 180 of EST sequences that have significant hits on protein sequences of the exclusive Mollusks database through BLASTX program and 343 of EST sequences that have significant hits on NCBI NR database. We also found that 211 of putative sequences through local BLAST (blastx, E < e-10) search against KOG database were classified into 16 functional categories. Some kinds of immune response related genes encoding allograft inflammatory factor 1 (AIF-1), B-cell translocation gene 1 (BTG1), C-type lectin A, thioester-containing protein and 26S proteasome regulatory complex were identified. To determine phylogenetic relationship, we identified partial sequences of four genes (COX1, COX2, 12S rRNA and NADH dehydrogenase) that significantly matched with the mitochondrial genomes of 3 species-Ml (Meretrix lusoria), Mp (Meretrix petechialis) and Mm (Meretrix meretrix). As a result, we found that there was a little bit of a difference between sequences of Korean isolates and other known isolates. This study will be useful to develop breeding technology and might also be helpful to establish a classification system.

Genome-wide Copy Number Variation in a Korean Native Chicken Breed (한국 토종닭의 전장 유전체 복제수변이(CNV) 발굴)

  • Cho, Eun-Seok;Chung, Won-Hyong;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Mi-Na;Kim, Namshin;Kim, Tae-Hun;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Copy number variation (CNV) is a form of structural variation that shows various numbers of copies in segments of the DNA. It has been shown to account for phenotypic variations in human diseases and agricultural production traits. Currently, most of chicken breeds in the poultry industry are based on European-origin breeds that have been mostly provided from several international breeding companies. Therefore, National Institute of Animal Science, RDA has been trying to restore and improve Korean native chicken breeds (12 lines of 5 breeds) for about 20 years. Thanks to the recent advance of sequencing technologies, genome-wide CNV can be accessed in the higher resolution throughout the genome of species of interest. However, there is no systematic study available to dissect the CNV in the native chicken breed in Korea. Here, we report genome-wide copy number variations identified from a genome of Korean native chicken (Line L) by comparing between the chicken reference sequence assembly (Gallus gallus) and a de novo sequencing assembly of the Korean native chicken (Line L). Throughout all twenty eight chicken autosomes, we identified a total of 501 CNVs; defined as gain and loss of duplication and deletion respectively. Furthermore, we performed gene ontology (GO) analysis for the putative CNVs using DAVID, leading to 68 GO terms clustered independently. Of the clustered GO terms, genes related to transcription and gene regulation were mainly detected. This study provides useful genomic resource to investigate potential biological implications of CNVs with traits of interest in the Korean native chicken.

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Association of DNA Base-excision Repair XRCC1, OGG1 and APE1 Gene Polymorphisms with Nasopharyngeal Carcinoma Susceptibility in a Chinese Population

  • Li, Qing;Wang, Jian-Min;Peng, Yu;Zhang, Shi-Heng;Ren, Tao;Luo, Hao;Cheng, Yi;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5145-5151
    • /
    • 2013
  • Background: Numerous carcinogens and reactive oxygen species (ROS) may cause DNA damage including oxidative base lesions that lead to risk of nasopharyngeal carcinoma. Genetic susceptibility has been reported to play a key role in the development of this disease. The base excision repair (BER) pathway can effectively remove oxidative lesions, maintaining genomic stability and normal expression, with X-ray repair crosscomplementing1 (XRCC1), 8-oxoguanine glycosylase-1 (OGG1) and apurinic/apyimidinic endonuclease 1 (APE1) playing important roles. Aims: To analyze polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of nasopharyngeal carcinoma. Materials and Methods: We detected SNPs of XRCC1 (Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu and -141T/G) using the polymerase chain reaction (PCR) with peripheral blood samples from 231 patients with NPC and 300 healthy people, furtherly analyzing their relations with the risk of NPC in multivariate logistic regression models. Results: After adjustment for sex and age, individuals with the XRCC1 399Gln/Gln (OR=1.96; 95%CI:1.02-3.78; p=0.04) and Arg/Gln (OR=1.87; 95%CI:1.29-2.71; p=0.001) genotype variants demonstrated a significantly increased risk of nasopharyngeal carcinoma compared with those having the wild-type Arg/Arg genotype. APE1-141G/G was associated with a significantly reduced risk of NPC (OR=0.40;95%CI:0.18-0.89) in the smoking group. The OR calculated for the combination of XRCC1 399Gln and APE1 148Gln, two homozygous variants, was significantly additive for all cases (OR=2.09; 95% CI: 1.27-3.47; p=0.004). Conclusion: This is the first study to focus on the association between DNA base-excision repair genes (XRCC1, OGG1 and APE1) polymorphism and NPC risk. The XRCC1 Arg399Gln variant genotype is associated with an increased risk of NPC. APE1-141G/G may decrease risk of NPC in current smokers. The combined effects of polymorphisms within BER genes of XRCC1 399Gln and APE1 148Gln may contribute to a high risk of nasopharyngeal carcinoma.

Phylogenetic Analysis of Bacterial Diversity in the Marine Sponge, Asteropus simplex, Collected from Jeju Island (제주도에서 채집한 해양 해면, Asteropus simplex의 공생세균에 관한 계통학적 분석)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.275-283
    • /
    • 2012
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Asteropus simplex collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and MA media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 94% similarities compared with known bacterial species, and the isolates belonged to five phyla, Alphaproteobacteria, Gammaproteobacteria Actinobacteria, Bacteroidetes, and Firmicutes, of which Gammaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge-derived total gDNA showed 12 DGGE bands, and their sequences showed more than 90% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven phyla, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteira, Chloroflexi, and Nitrospira. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with A. simplex by both RFLP and DGGE methods, however, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture-independent method than in culture-dependent method.

Cloning and Phylogenetic Characterization of Coat Protein Genes of Two Isolates of Apple mosaic virus from ¡?Fuji¡? Apple

  • Lee, Gung-Pyo;Ryu, Ki-Hyun;Kim, Hyun-Ran;Kim, Chung-Sun;Lee, Dong-Woo;Kim, Jeong-Soo;Park, Min-Hye;Noh, Young-Mi;Choi, Sun-Hee;Han, Dong-Hyun;Lee, Chang-Hoo
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was detected and isolated from diseased 'Fuji' apple (Malus domestica) in Korea. The coat protein (CP) genes of two ApMV strains, denoted as ApMV-Kl and ApMV-K2, were amplified by using the reverse transcription and polymerase chain reaction (RT-PCR) and were analyzed thereafter. The objectives were to define the molecular variability of genomic information of ApMV found in Korea and to develop virus-derived resistant gene source for making virus-resistant trans-genic apple. RT-PCR amplicons for the APMVS were cloned and their nucleotide sequences were determined. The CPs of ApMV-Kl and ApMV-K2 consisted of 222 and 232 amino acid residues, respectively. The identities of the CPs of the two Korean APMVS were 93.1% and 85.6% at the nucleotide and amino acid sequences, respectively. The CP of ApMV-Kl showed 46.1-100% and 43.2-100% identities to eight different ApMV strains at the nucleotide and amino acid levels, respectively. When ApMV-PV32 strain was not included in the analysis, ApMV strains shared over 83.0% and 78.6% homologies at the nucleotide and amino acid levels, respectively. ApMV strains showed heterogeneity in CP size and sequence variability. Most of the amino acid residue differences were located at the N-termini of the strains of ApMV, whereas, the middle regions and C-termini were remarkably conserved. The APMVS were 17.(1-54.5% identical with three other species of the genus Ilarviyus. ApMV strains can be classified into three subgroups (subgroups I, II, and III) based on the phylogenetic analysis of CP gene in both nucleotide and amino acid levels. Interestingly, all the strains of subgroup I were isolated from apple plants, while the strains of subgroups II and III were originated from peach, hop, or pear, The results suggest that ApMV strains co-evolved with their host plants, which may have resulted in the CP heterogeneity.

A Missense Mutation in Exon 5 of the Bovine Growth Hormone Gene (소 성장호르몬 유전자의 Exon 5번에서의 새로운 다형성 연구)

  • Yoon, D. H.;Kim, T. H.;Lee, K. H.;Park, E. W.;Lee, H. K.;Cheong, I. C.;Hong, K. C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • Growth Hormone (GH) gene is a member of gene family through the evolutionary process from a small common ancestral gene by a series of gene duplications. The role of the GH in growth and performance controls has been extensively studied in human, mice and livestock. Many researchers have considered GH as a strong candidate gene for evaluation of genetic polymorphisms that could be associated with economic traits in cattle. We report here a novel missense mutation within the exon 5 of the bovine Growth Hormone (bGH) gene. We could amplified 522 bp fragments from eight unrelated Hanwoo cattle by PCR, then, subsequently cloned and sequenced. An Msp I RFLP corresponding to a C to T transition was observed at position 2258 nt. From this result, we could predict a missense mutation (Arg to Trp) at codon 166 in a highly conserved region among many mammals. Codominant Mendelian segregation of the two alleles, Msp I (+) and Msp I (-), was observed in two full-sib F2 families (n = 32, African taurine Bos taurus ${\times}$ African zebu Bos indicus) and eight half-sib Hanwoo families. For the availability of genetic marker, we have performed PCR-RFLP with a large number of individual animals from 15 different cattle breeds (European and Asian taurines, and African indicines). Consideration of breed frequencies of Msp I (-) allele in relation to breed type and their geographic origins, shows higher frequencies in humped breeds or Asian cattle breeds than in humpless or European breeds. This result indicates that the missense mutation can be contributed the functional significance such as the signal transduction through the receptor binding, also may be used as a marker for selection of the economic traits in Hanwoo.