• Title/Summary/Keyword: Genomic species

Search Result 589, Processing Time 0.025 seconds

Isolation and Identification of Ampicillin-resistant Bacteria in Changwon (창원근교에서의 ampicillin 내성세균의 분리 및 동정)

  • Bae, Young-Min
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1529-1535
    • /
    • 2018
  • The number of antibiotic-resistant bacteria is increasing rapidly while the discovery rate of new antibiotics is in decline. A systematic study is therefore necessary to investigate which bacteria are resistant to medically important antibiotics and how high that resistance is. To that end, this study aimed to analyze which bacteria demonstrated resistance to ampicillin, one of the currently most-widely used medical antibiotics. Water samples were collected from the Changwon-Cheon that runs through Changwon City and from the pond in front of the dormitory building at Changwon University. Hundreds of ampicillin-resistant colonies were obtained and 22 morphologically distinct examples were chosen for further study. These bacteria were identified by amplifying their 16S rRNA genes and comparing those sequences with data in GenBank. The bacteria was identified as belonging to 10 families, 12 genera, and 17 species, and all were able to grow in the presence of $50{\mu}g/ml$ ampicillin while seven showed growth at ampicillin concentrations as high as 1.5 mg/ml.

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing (차세대 염기서열분석을 통한 밀 기능유전체 연구의 현황과 전망)

  • Choi, Changhyun;Yoon, Young-Mi;Son, Jae-Han;Cho, Seong-Woo;Kang, Chon-Sik
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.364-377
    • /
    • 2018
  • Hexaploid wheat (common wheat/bread wheat) is one of the most important cereal crops in the world and a model for research of an allopolyploid plant with a large, highly repetitive genome. In the heritability of agronomic traits, variation in gene presence/absence plays an important role. However, there have been relatively few studies on the variation in gene presence/absence in crop species, including common wheat. Recently, a reference genome sequence of common wheat has been fully annotated and published. In addition, advanced next-generation sequencing (NGS) technology provides high quality genome sequences with continually decreasing NGS prices, thereby dawning full-scale wheat functional genomic studies in other crops as well as common wheat, in spite of their large and complex genomes. In this review, we provide information about the available tools and methodologies for wheat functional genomics research supported by NGS technology. The use of the NGS and functional genomics technology is expected to be a powerful strategy to select elite lines for a number of germplasms.

Sinomonas terrae sp. nov., Isolated from an Agricultural Soil

  • Hyosun Lee;Ji Yeon Han;Dong-Uk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.909-914
    • /
    • 2023
  • While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42℃ (optimum, 30℃), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel speciesof the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T =NBRC 115790T).

Microbacterium elymi sp. nov., Isolated from the Rhizospheric Soil of Elymus tsukushiensis, a Plant Native to the Dokdo Islands, Republic of Korea

  • Ye-Ji Hwang;Soo-Yeong Lee;Jin-Soo Son;Jin-suk Youn;Woong Lee;Jae-Ho Shin;Mi-Hwa Lee;Sa-Youl Ghim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • Microbacterium elymi KUDC0405T was isolated from the rhizosphere of Elymus tsukushiensis from the Dokdo Islands. The KUDC0405T strain was Gram-stain-positive, non-spore forming, non-motile, and facultatively anaerobic bacteria. Strain KUDC0405T was a rod-shaped bacterium with size dimensions of 0.3-0.4 × 0.7-0.8 ㎛. Based on 16S rRNA gene sequences, KUDC0405T was most closely related to Microbacterium bovistercoris NEAU-LLET (97.8%) and Microbacterium pseudoresistens CC-5209T (97.6%). The dDDH (digital DNA-DNA hybridization) values between KUDC0405T and M. bovistercoris NEAU-LLET and M. pseudoresistens CC-5209T were below 17.3% and 17.5%, respectively. The ANI (average nucleotide identity) values among strains KUDC0405T, M. bovistercoris NEAU-LLET, and M. pseudoresistens CC-5209T were 86.6% and 80.7%, respectively. The AAI (average amino acid identity) values were 64.66% and 64.97%, respectively, between KUDC0405T and its closest related type strains. The genome contained 3,596 CDCs, three rRNAs, 46 tRNAs, and three non-coding RNAs (ncRNAs). The genomic DNA GC content was 70.4%. The polar lipids included diphosphatydilglycerol, glycolipid, phosphatydilglycerol, and unknown phospholipid, and the major fatty acids were anteiso-C17:0 and iso-C16:0. Strain KUDC0405T contained MK-12 as the major menaquinone. Based on genotypic, phylogenetic, and phenotypic properties, strain KUDC0405T should be considered a novel species within the genus Microbacterium, for which we propose the name M. elymi sp. nov., and the type strain as KUDC0405T (=KCTC 49411T, =CGMCC1.18472T).

First Report of Tomato Spotted Wilt Virus in Oxypetalum coeruleum in Korea (옥시페탈룸에서 발생한 토마토반점위조바이러스 국내 첫 보고)

  • Eseul, Baek;Peter, Palukaitis;Ju-Yeon, Yoon
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.231-236
    • /
    • 2022
  • Oxypetalum coeruleum, commonly known as Tweedia, is a perennial herbaceous plant of the Apocynaceae family native to southern Brazil and Uruguay. Tweedia plants are grown as one of the most popular ornamental flowers for floral arrangement in Korea. In May 2021, several tweedia plants in a single greenhouse in Gimje, Jeollabuk-do were found to show virus-like symptoms including necrotic rings, vein-clearing, chlorotic mottle, and mosaic on the leaves, and necrosis on the stems. Here, we have identified tomato spotted wilt virus (TSWV) in symptomatic tweedia leaves by applying high-throughput RNA sequencing. In the result, a single infection by TSWV was verified without mixed infections of different virus species. To confirm the presence of TSWV, a reverse transcription polymerase chain reaction was performed with a specific primer set to the N gene of TSWV. The complete genomic sequence of L, M, and S segments of TSWV 'Oxy' isolate were determined and deposited in GenBank under accession numbers LC671525, LC671638, and LC671639, respectively. In the phylogenetic tree analysis by maximum likelihood method, 'Oxy' isolate showed a high relationship with TSWV 'Gumi' isolate from Gerbera jamesonii in Gyeongsangbuk-do, Korea; for all three RNA segments. To our knowledge, this is the first report of TSWV infection of O. coeruleum in Korea.

Characterization of broad bean wilt virus 2 isolated from Perilla frutescens in Korea (국내 잎들깨에서 발생한 잠두위조바이러스2의 특성 구명)

  • Hyun-Sun Kim;Hee-Seong Byun;You-Ji Choi;Hyun-Yong Choi;Jang-Kyun Seo;Hong-Soo Choi;Bong-Choon Lee;Mikyeong Kim;Hae-Ryun Kwak
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RT-PCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.

Isolation and Identification of Oceanisphaera sp. JJM57 from Marine Red Algae Laurencia sp. (Ceramiales: Rhodomelaceae) (해양 홍조류 Laurencia sp. (Ceramiales: Rhodomelaceae)에서 분리한 Oceanisphaera sp. JJM57의 분리 및 동정)

  • Kim, Man-Chul;Dharaneedharan, S.;Moon, Young-Gun;Kim, Dong-Hwi;Son, Hong-Joo;Heo, Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • A taxonomic study was carried out to assess the phylogenetic characteristics of isolate JJM57 from marine red algae Laurencia sp. collected from intertidal zone in Jeju Island, South Korea. Comparative analysis of 16S rRNA gene sequence shows that this isolate belongs to the genus Oceanisphaera. It shows 98.02% and 97.7% sequence similarity with Oceanisphera litoralis DSM $15406^T$ and Oceanisphera donghaensis KCTC $12522^T$, respectively. Strain JJM57 is a Gram-negative, aerobic, moderately halophilic bacterium able to grow in different NaCl concentration ranges from 0.5 to 8.0% and at varying temperatures from 4 to $37^{\circ}C$. Sharing some of the physiological and biochemical properties with O. litoralis and O. donghaensis, JJM57 strain differs in the utilization of ethanol, proline, and alanine. The G+C contents of the strain JJM57 is 61.94 mol% and it is rich in $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2-OH, $C_{16:0}$, and $C_{18:1}$ ${\omega}7c$ fatty acids. The DNA-DNA relatedness data separates the strain JJM57 from other species such as O. litoralis and O. donghaensis. On the basis of these polyphasic evidences, present study proposed that strain JJM57 (=KCTC 22371 =AM983543 =CCUG 60764) represents a novel bacterial species of Oceanisphaera.

Development of EvaGreen Based Real-time PCR Assay for Detection and Quantification Toxic Dinoflagellate Pfiesteria Piscicida and Field Applications (유독 와편모조류 Pfiesteria Piscicida 탐지 및 정량 분석을 위한 EvaGreen 기반 Real-time PCR기법 개발과 현장 적용)

  • PARK, BUM SOO;JOO, JAE-HYOUNG;KIM, MYO-KYUNG;KIM, JOO-HWAN;KIM, JIN HO;BAEK, SEUNG HO;HAN, MYUNG-SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • Pfiesteria piscicida is one of heterotrophic dinoflagellate having toxic metaboliges, and it is difficult to detect and quantify this dinoflagellate via light microscope due to small size and morphological similarity with Pfiesteria-like dinoflagellate (PLD) species. Alternatively, we developed quantitative real-time PCR assay based on EvaGreen and determined field accessibility throughout the investigation of distribution in the entire Korean coastal waters and population dynamics in Shihwa Lake. The P. piscicida-specific primers based on internal transcribed spacer 1 (ITS 1) were designed and the specificity of primers was confirmed by PCR with other genomic DNAs which have genetic similarity with target species. Through real-time PCR assay, a standard curve which had a significant linear correlation between log cell number and $C_T$ value ($r^2{\geq}0.999$) and one informative melting peak ($88^{\circ}C$) were obtained. These results implies that developed real-time PCR can accurately detect and quantify P. piscicida. Throughout the field applications of real-time PCR assay, P. piscicida was distributed in western (Mokpo and Kimje) and easthern (Gangneng) Korean coastal water even though light microscopy failed to identify P. piscicida. In the investigation of population dynamics in Shihwa Lake, the density of P. piscicida was peaked in June, July and August 2007 at St. 1 where salinity (${\leq}15psu$) was lower than the other 2 sites. In this study, we successed to develop EvaGreen bassed real-time PCR for detection and quantification of P. piscicida in fields, so this developed assay will be useful for various ecological studies in the future.

Reconstruction of Metabolic Pathway for the Chicken Genome (닭 특이 대사 경로 재확립)

  • Kim, Woon-Su;Lee, Se-Young;Park, Hye-Sun;Baik, Woon-Kee;Lee, Jun-Heon;Seo, Seong-Won
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • Chicken is an important livestock as a valuable biomedical model as well as food for human, and there is a strong rationale for improving our understanding on metabolism and physiology of this organism. The first draft of chicken genome assembly was released in 2004, which enables elaboration on the linkage between genetic and metabolic traits of chicken. The objectives of this study were thus to reconstruct metabolic pathway of the chicken genome and to construct a chicken specific pathway genome database (PGDB). We developed a comprehensive genome database for chicken by integrating all the known annotations for chicken genes and proteins using a pipeline written in Perl. Based on the comprehensive genome annotations, metabolic pathways of the chicken genome were reconstructed using the PathoLogic algorithm in Pathway Tools software. We identified a total of 212 metabolic pathways, 2,709 enzymes, 71 transporters, 1,698 enzymatic reactions, 8 transport reactions, and 1,360 compounds in the current chicken genome build, Gallus_gallus-2.1. Comparative metabolic analysis with the human, mouse and cattle genomes revealed that core metabolic pathways are highly conserved in the chicken genome. It was indicated the quality of assembly and annotations of the chicken genome need to be improved and more researches are required for improving our understanding on function of genes and metabolic pathways of avian species. We conclude that the chicken PGDB is useful for studies on avian and chicken metabolism and provides a platform for comparative genomic and metabolic analysis of animal biology and biomedicine.