• Title/Summary/Keyword: Genomic diversity

Search Result 250, Processing Time 0.032 seconds

Development of molecular markers for the differentiation of Angelica gigas Jiri line by using ARMS-PCR analysis (세발당귀(Angelica gigas Jiri)의 판별을 위한 ARMS-PCR용 분자표지 개발)

  • Lee, Shin-Woo;Lee, Soo Jin;Han, Eun-Hee;Shin, Yong-Wook;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • Angelica is a widely used medicinal and perennial plant. Information on the genetic diversity of Angelica populations is essential for their conservation and germ plasmic utilization. Although Angelica is an important medicinal plant species registered in South Korea, no molecular markers are currently available to distinguish it from other similar species from different countries. This developed single nucleotide polymorphism (SNP) markers derived from nuclear ribosomal DNA internal transcribed spacer regions genomic sequences to identify distinct Korean-specific Angelica species via amplification refractory mutation system (ARMS)-PCR curve analyses. We performed molecular authentication of different kinds of Korean-specific Angelica species such as A. gigas Nakai and A. gigas Jiri using DNA sequences in the ITS intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific Angelica species from different countr.

Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking

  • Kim, Gyungcheon;Park, Gwoncheol;Kang, Seohyun;Lee, Sanghee;Park, Jiyoung;Ha, Jina;Park, Kunbawui;Kang, Minseok;Cho, Min;Shin, Hakdong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1709-1715
    • /
    • 2021
  • Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.

Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability

  • Pourrahim, R.;Farzadfar, Sh.
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • The genetic variability and population structure of apple mosaic virus (ApMV) have been studied; however, synonymous codon usage patterns influencing the survival rates and fitness of ApMV have not been reported. Based on phylogenetic analyses of 52 ApMV coat protein (CP) sequences obtained from apple, pear, and hazelnut, ApMV isolates were clustered into two groups. High molecular diversity in GII may indicate their recent expansion. A constant and conserved genomic composition of the CP sequences was inferred from the low codon usage bias. Nucleotide composition and relative synonymous codon usage (RSCU) analysis indicated that the ApMV CP gene is AU-rich, but G- and U-ending codons are favored while coding amino acids. This unequal use of nucleotides together with parity rule 2 and the effective number of codon (ENC) plots indicate that mutation pressure together with natural selection drives codon usage patterns in the CP gene. However, in this combination, selection pressure plays a more crucial role. Based on principal component analysis plots, ApMV seems to have originated from apple trees in Europe. However, according to the relative codon deoptimization index and codon adaptation index (CAI) analyses, ApMV exhibited the greatest fitness to hazelnut. As inferred from the results of the similarity index analysis, hazelnut has a major role in shaping ApMV RSCU patterns, which is consistent with the CAI analysis results. This study contributes to the understanding of plant virus evolution, reveals novel information about ApMV evolutionary fitness, and helps find better ApMV management strategies.

Genomic Analysis of 13 Putative Active Prophages Located in the Genomes of Walnut Blight Pathogen Xanthomonas arboricola pv. juglandis

  • Cao, Zheng;Cuiying, Du;Benzhong, Fu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.563-573
    • /
    • 2022
  • Xanthomonas arboricola pv. juglandis (Xaj) is a globally important bacterial pathogen of walnut trees that causes substantial economic losses in commercial walnut production. Although prophages are common in bacterial plant pathogens and play important roles in bacterial diversity and pathogenicity, there has been limited investigation into the distribution and function of prophages in Xaj. In this study, we identified and characterized 13 predicted prophages from the genomes of 12 Xaj isolates from around the globe. These prophages ranged in length from 11.8 kb to 51.9 kb, with between 11-75 genes and 57.82-64.15% GC content. The closest relatives of these prophages belong to the Myoviridae and Siphoviridae families of the Caudovirales order. The phylogenetic analysis allowed the classification of the prophages into five groups. The gene constitution of these predicted prophages was revealed via Roary analysis. Amongst 126 total protein groups, the most prevalent group was only present in nine prophages, and 22 protein groups were present in only one prophage (singletons). Also, bioinformatic analysis of the 13 identified prophages revealed the presence of 431 genes with an average length of 389.7 bp. Prokka annotation of these prophages identified 466 hypothetical proteins, 24 proteins with known function, and six tRNA genes. The proteins with known function mainly comprised prophage integrase IntA, replicative DNA helicase, tyrosine recombinase XerC, and IS3 family transposase. There was no detectable insertion site specificity for these prophages in the Xaj genomes. The identified Xaj prophage genes, particularly those of unknown function, merit future investigation.

Differential microbiota network according to colorectal cancer lymph node metastasis stages

  • Yeuni Yu;Donghyun Han;Hyomin Kim;Yun Hak Kim;Dongjun Lee
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.52-59
    • /
    • 2023
  • Purpose: Colorectal cancer (CRC) is a common malignancy worldwide and the second leading cause of cancer-related deaths. In addition, lymph node metastasis in CRC is considered an important prognostic factor for predicting disease recurrence and patient survival. Recent studies demonstrated that the microbiome makes substantial contributions to tumor progression, however, there is still unknown about the microbiome associated with lymph node metastasis of CRC. Here, we first reported the microbial and tumor-infiltrating immune cell differences in CRC according to the lymph node metastasis status. Materials and Methods: Using Next Generation Sequencing data acquired from 368 individuals diagnosed with CRC (N0, 266; N1, 102), we applied the LEfSe to elucidate microbial differences. Subsequent utilization of the Kaplan-Meier survival analysis enabled the identification of particular genera exerting significant influence on patient survival outcomes. Results: We found 18 genera in the N1 group and 3 genera in the N0 group according to CRC lymph node metastasis stages. In addition, we found that the genera Crenobacter (P=0.046), Maricaulis (P=0.093), and Arsenicicoccus (P=0.035) in the N0 group and Cecembia (P=0.08) and Asanoa (P=0.088) in the N1 group were significantly associated with patient survival according to CRC lymph node metastasis stages. Further, Cecembia is highly correlated to tumor-infiltrating immune cells in lymph node metastasized CRC. Concolusion: Our study highlights that tumor-infiltrating immune cells and intratumoral microbe diversity are associated with CRC. Also, this potential microbiome-based oncology diagnostic tool warrants further exploration.

Identification of Host-Resistant and Susceptible Varieties of Korean Grapes to Plasmopara viticola, a Pathogen Causing Grapevine Downy Mildew

  • Marc Semunyana;Sun Ha Kim;Jiyoung Min;Soo-Min Lee;Sang-Keun Oh
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.179-190
    • /
    • 2023
  • Grapevine downy mildew, caused by Plasmopara viticola, significantly damages vineyards and is one of the most devastating diseases affecting cultivated grapes worldwide. In this study, we characterized the phenotypic and molecular traits of 11 P. viticola isolates from four grape-growing regions in South Korea. Additionally, we investigated the diversity of pathogenicity among these isolates and conducted an assay to evaluate the response of grape cultivars to P. viticola infection. Lemon-shaped sporangia were identified in the collected isolates, which released zoospores into the suspension at room temperature. Within a few hours of inoculation, the zoospores developed germ tubes. We tested 11 P. viticola isolates for pathogenicity in 845 grape cultivars to screen for grape host resistance to downy mildew infection. Among the tested isolates, JN-9 showed the highest virulence. Grape cultivars displayed varying phenotypic reactions to P. viticola infection: approximately 7% were highly susceptible, 41% were susceptible, 20% were moderately susceptible, 8% were resistant, and 24% exhibited extreme resistance. Phylogenetic analysis based on four genomic regions (internal transcribed spacer 1 [ITS1], actin, beta-tubulin, and cytochrome c oxidase II) revealed a close evolutionary relationship among all the Korean isolates, forming a single monophyletic lineage. Notably, these isolates showed greater similarity to European isolates than to American isolates. This comprehensive study contributes to a deeper understanding of the identity and behavior of P. viticola, which is crucial for developing effective resistance strategies against this pathogen in grape cultivars cultivated in South Korea.

Genetic Diversity and Relationship of Ogye Population in Korea Using 25 Microsatellite Markers (MS 마커를 활용한 지역별 오계 유전자원의 다양성 및 유연관계 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jin-Wook;Jeon, Da-Yeon;Kim, Seung-Chang;Jeon, Ik-Soo;Ko, Yeoung-Gyu;Lee, Jun-Heon;Kim, Sung-Hee;Baek, Jun-Jong;Oh, Dong-Yep;Han, Jae-Yong;Lee, Seung-Sook;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.229-236
    • /
    • 2018
  • The aim of this study was to evaluate the genetic diversity and relationships of Ogye populations in Korea. A total of 243 genomic DNA samples from 6 Ogye population (Yeonsan Ogye; YSO, Animal Genetic Resources Research Center Ogye; ARO, Chungbuk Ogye; CBO, Chungnam Ogye; CNO, Gyeongbuk Ogye; GBO, Seoul National University Ogye; SUO) and 3 introduced chicken breeds (Rhode Island Red; RIR, White Leghorn; LG, Cornish; CN) were used. Sizes of 25 microsatellite markers were decided using GeneMapper Software(v 5.0) after analyzing ABI 3130XL. A total of 153 alleles were observed and the range was 2 to 10 per each locus. The mean of expected and observed heterozygosity and PIC (Polymorphism Information Content) value was 0.53, 0.50, 0.46 respectively. The lowest genetic distance (0.073) was observed between YSO and SUO, and the highest distance (0.937) between the RIR and CBO. The results of clustering analysis suggested 3 clusters (${\Delta}K=7.96$). Excluding GBO population, 5 Ogye populations (YSO, ARO, CBO, CNO, SUO) were grouped in same cluster with high genetic uniformity (0.990, 0.979, 0.989, 0.994, 0.985 respectively). But GBO population was grouped in cluster 1 with low genetic uniformity (0.340). The results of this study can be use to basic data for the genetic evaluation and management of Ogye populations in Korea.

Geographic Variations and DNA Polymorphisms in Gizzard-shad (Konosirus punctatus) (전어 (Konosirus punctatus)의 지리적 변이와 DNA 다형성)

  • Park, Su-Young;Kim, Jong-Yeon;Yoon, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.18 no.4
    • /
    • pp.300-310
    • /
    • 2006
  • Genomic DNA isolated from three geographical gizzard-shad (Konosirus punctatus) populations in Seocheon (SC), Busan (BS) and Gochang (GC) collected in the West Sea and the southern sea, respectively, off the Korean Peninsula, were PCR-amplified repeatedly. Eight selected decamer and 20-mer primers generated a total of 713 loci in the SC population, 791 in the BS population, and 732 in the GC population, with a DNA fragment size ranging from 100 bp to 2,800 bp. We identified 50 unique loci for the SC population, 70 unique loci for the BS population and 130 for the GC population: 120 shared loci for the three populations. There were 108 specific loci (15.1%) for the SC population, 74 (9.4%) for the BS population, and 67 (9.2%) for the GC population. Eight primers also generated 48 polymorphic loci (6.7%) for the SC population, 26 (3.3%) for the BS population, and 16 (2.2%) for the GC population. The similarity matrix ranged from 0.756 to 0.936 for the SC population, from 0.800 to 0.938 for the BS population, and from 0.731 to 0.959 for the GC population. The dendrogram obtained by the eight primers indicates three genetic clusters: cluster 1 (SEOCHEON 01~SEOCHEON 10), cluster 2 (BUSAN 11~BUSAN 20 and GOCHANG 23~GOCHANG 24), and cluster 3 (GOCHANG 21, 22, 25, 26, 27, 28, 29 and 30). As stated above, some individuals of the GC population appear to belong in BS population. When seeing this result, it was thought with the fact that some individuals of 2 populations seem to come and go partially. Thus, RAPD-PCR analysis revealed a significant genetic distance between the three geographical gizzard-shad populations. Using various decamer and 20-mer primers, RAPD-PCR may be applied to identify specific/polymorphic markers that are particular to a species and geographic population, and to define genetic diversity, polymorphisms, and similarities among geographical gizzard-shad populations.

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

Monitoring of genetically close Tsaiya duck populations using novel microsatellite markers with high polymorphism

  • Lai, Fang-Yu;Chang, Yi-Ying;Chen, Yi-Chen;Lin, En-Chung;Liu, Hsiu-Chou;Huang, Jeng-Fang;Ding, Shih-Torng;Wang, Pei-Hwa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.888-901
    • /
    • 2020
  • Objective: A set of microsatellite markers with high polymorphism from Tsaiya duck were used for the genetic monitoring and genetic structure analysis of Brown and White Tsaiya duck populations in Taiwan. Methods: The synthetic short tandem repeated probes were used to isolate new microsatellite markers from the genomic DNA of Tsaiya ducks. Eight populations, a total of 566 samples, sourced from Ilan Branch, Livestock Research Institute were genotyped through novel and known markers. The population genetic variables were calculated using optional programs in order to describe and monitor the genetic variability and the genetic structures of these Tsaiya duck populations. Results: In total 24 primer pairs, including 17 novel microsatellite loci from this study and seven previously known loci, were constructed for the detection of genetic variations in duck populations. The average values for the allele number, the effective number of alleles, the observed heterozygosity, the expected heterozygosity, and the polymorphism information content were 11.29, 5.370, 0.591, 0.746, and 0.708, respectively. The results of analysis of molecular variance and principal component analysis indicated a contracting Brown Tsaiya duck cluster and a spreading White Tsaiya duck cluster. The Brown Tsaiya ducks and the White Tsaiya ducks with Pekin ducks were just split to six clusters and three clusters when K was set equal to 6 and 3 in the Bayesian cluster analysis. The individual phylogenetic tree revealed eight taxa, and each individual was assigned to its own population. Conclusion: According to our study, the 24 novel microsatellite markers exhibited a high capacity to analyze relationships of inter- and intra-population in those populations with a relatively limited degree of genetic diversity. We suggest that duck farms in Taiwan could use the new (novel) microsatellite set to monitor the genetic characteristics and structures of their Tsaiya duck populations at various intervals in order to ensure quality breeding and conservation strategies.