• 제목/요약/키워드: Genomic Sequence

검색결과 887건 처리시간 0.025초

Genomic Organization of Penicillium chrysogenum chs4, a Class III Chitin Synthase Gene

  • Park, Yoon-Dong;Lee, Myung-Sook;Kim, Ji-Hoon;Jun Namgung;Park, Bum-Chan;Bae, Kyung-Sook;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.230-238
    • /
    • 2000
  • Class III chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class III chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5'flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

  • PDF

Random Sequence Analysis of the Genomic DNA of Methanopyrus kandleri and Molecular Cloning of the Gene Encoding a Homologue of the Catalytic Subunit of Carbon Monoxide Dehydrogenase

  • Shin, Hyun-Seock;Ryu, Jae-Ryeon;Han, Ye-Sun;Choi, Yong-Jin;Yu, Yeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.404-413
    • /
    • 1999
  • Methanopyrus kandleri is a hyperthermophilic methanogen that represents one of the most heat-resistant organisms: the maximum growth temperature of M. kandleri is $110^{\circ}C$. A random sequence analysis of the genomic DNA of M. kandleri has been performed to obtain genomic information. More than 200 unique sequence tags were obtained and compared with the sequences in the GenBank and PIR databases. About 30% of the analyzed tags showed strong sequence similarity to previously identified genes involved in various cellular processes such as biosynthesis, transport, methanogenesis, or metabolism. When statistics relating to the frequency of codons were examined, the sequenced open reading frames showed highly biased codon usage and a high content of charged amino acids. Among the identified genes, a homologue of the catalytic subunit of carbon monoxide dehydrogenase (CODH) that reduces $CO_2$ to CO was cloned and sequenced in order to examine its detailed gene structure. The cloned gene includes consensus promoters. The amino acid sequence of the cloned gene shows a strong homology with the CODH genes from methanogenic Archaea, especially in the presumed binding sites for Fe-S centers.

  • PDF

Comparison Architecture for Large Number of Genomic Sequences

  • Choi, Hae-won;Ryoo, Myung-Chun;Park, Joon-Ho
    • 정보화연구
    • /
    • 제9권1호
    • /
    • pp.11-19
    • /
    • 2012
  • Generally, a suffix tree is an efficient data structure since it reveals the detailed internal structures of given sequences within linear time. However, it is difficult to implement a suffix tree for a large number of sequences because of memory size constraints. Therefore, in order to compare multi-mega base genomic sequence sets using suffix trees, there is a need to re-construct the suffix tree algorithms. We introduce a new method for constructing a suffix tree on secondary storage of a large number of sequences. Our algorithm divides three files, in a designated sequence, into parts, storing references to the locations of edges in hash tables. To execute experiments, we used 1,300,000 sequences around 300Mbyte in EST to generate a suffix tree on disk.

Molecular cloning, sequence polymorphism and genomic organization of far eastern catfish (Silurus asotus) GH gene

  • Park, Byul-Nim;Bang, In-Chul;Kim, Dong-Soo;Nam, Yoon-Kwon
    • 한국양식학회:학술대회논문집
    • /
    • 한국양식학회 2003년도 추계학술발표대회 논문요약집
    • /
    • pp.42-42
    • /
    • 2003
  • The far eastern catfish (Silurus asotus) growth hormone (GH) gene was cloned and characterized. The complete nucleotide sequences of genomic GH gene sequences as well as a catfish GH cDNA were obtained by RT-PCR and gene filter screening. The GH cDNA and genomic gene span 1.0 and 1.8 kb from the start codon to the polyadenylation signal, respectively. Both on cDNA and gDNA GH genes, the sequence polymorphism was detected including various silence mutations. The genomic GH gene comprised of only four exons and three introns, which was novel type of fish GH gene structure. The evolutionary relation of the catfish GH gene was inferred based on the comparative phylogenic analysis using the gene structures and sequences.

  • PDF

One Step Cloning of Defined DNA Fragments from Large Genomic Clones

  • Scholz, Christian;Doderlein, Gabriele;Simon, Horst H.
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.464-467
    • /
    • 2006
  • Recently, the nucleotide sequences of entire genomes became available. This information combined with older sequencing data discloses the exact chromosomal location of millions of nucleotide markers stored in the databases at NCBI, EMBO or DDBJ. Despite having resolved the intron/exon structures of all described genes within these genomes with a stroke of a pen, the sequencing data opens up other interesting possibilities. For example, the genomic mapping of the end sequences of the human, murine and rat BAC libraries generated at The Institute for Genomic Research (TIGR), reveals now the entire encompassed sequence of the inserts for more than a million of these clones. Since these clones are individually stored, they are now an invaluable source for experiments which depend on genomic DNA. Isolation of smaller fragments from such clones with standard methods is a time consuming process. We describe here a reliable one-step cloning technique to obtain a DNA fragment with a defined size and sequence from larger genomic clones in less than 48 hours using a standard vector with a multiple cloning site, and common restriction enzymes and equipment. The only prerequisites are the sequences of ends of the insert and of the underlying genome.

Detection of hydin Gene Duplication in Personal Genome Sequence Data

  • Kim, Jong-Il;Ju, Young-Seok;Kim, Shee-Hyun;Hong, Dong-Wan;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • 제7권3호
    • /
    • pp.159-162
    • /
    • 2009
  • Human personal genome sequencing can be done with high efficiency by aligning a huge number of short reads derived from various next generation sequencing (NGS) technologies to the reference genome sequence. One of the major obstacles is the incompleteness of human reference genome. We tried to analyze the effect of hidden gene duplication on the NGS data using the known example of hydin gene. Hydin2, a duplicated copy of hydin on chromosome 16q22, has been recently found to be localized to chromosome 1q21, and is not included in the current version of standard human genome reference. We found that all of eight personal genome data published so far do not contain hydin2, and there is large number of nsSNPs in hydin. The heterozygosity of those nsSNPs was significantly higher than expected. The sequence coverage depth in hydin gene was about two fold of average depth. We believe that these unique finding of hydin can be used as useful indicators to discover new hidden multiplication in human genome.

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)

  • Rameshkumar, Neelamegam;Ayyadurai, Niraikulam;Kayalvizhi, Nagarajan;Gunasekaran, Paramsamy
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.13-24
    • /
    • 2012
  • The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.

Rotaviruses의 염기배열 유사성 측정 (Nucleotide Sequence Homology in Rotaviruses)

  • 양재명
    • 미생물학회지
    • /
    • 제26권3호
    • /
    • pp.155-161
    • /
    • 1988
  • Nucleotide sequence homology between bovine, simian, and porcine rotavirus was determined by the RNA:RNA hybridization technique. Single stranded RNA, prepared in vitro with EDTA activated endogeneous viral RNA polymerase, was hhbridized with tritium labeled bovine rotavirus genomic RNA. The heteroduplex RNA was treated with single stranded RNA specific ribonucleases and the RNase resistant hybrid RNA was precipitated, and collected by filtration on a filter paper. Seventy four percent RNA sequence homology between bovine and simian rotavirus and 8 percent RNA sequence homology between bovine and porcine rotavirus was confirmed by hybridization between tritium labeled single stranded RNA and viral genomic RNA.

  • PDF

Isolation of a Variant Strain of Pleurotus eryngii and the Development of Specific DNA Markers to Identify the Variant Strain

  • Lee, Hyun-Jun;Kim, Sang-Woo;Ryu, Jae-San;Lee, Chang-Yun;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.46-51
    • /
    • 2014
  • A degenerated strain of Pleurotus eryngii KNR2312 was isolated from a commercial farm. Random amplified polymorphic DNA analysis performed on the genomic DNA of the normal and degenerated strains of this species revealed differences in the DNA banding pattern. A unique DNA fragment (1.7 kbp), which appeared only in the degenerated strain, was isolated and sequenced. Comparing this sequence with the KNR2312 genomic sequence showed that the sequence of the degenerated strain comprised three DNA regions that originated from nine distinct scaffolds of the genomic sequence, suggesting that chromosome-level changes had occurred in the degenerated strain. Using the unique sequence, three sets of PCR primers were designed that targeted the full length, the 5' half, and the 3' half of the DNA. The primer sets P2-1 and P2-2 yielded 1.76 and 0.97 kbp PCR products, respectively, only in the case of the degenerated strain, whereas P2-3 generated a 0.8 kbp product in both the normal and the degenerated strains because its target region was intact in the normal strain as well. In the case of the P2-1 and P2-2 sets, the priming regions of the forward and reverse primers were located at distinct genomic scaffolds in the normal strain. These two primer sets specifically detected the degenerate strain of KNR2312 isolated from various mushrooms including 10 different strains of P. eryngii, four strains of P. ostreatus, and 11 other wild mushrooms.

Genome Architecture and Its Roles in Human Copy Number Variation

  • Chen, Lu;Zhou, Weichen;Zhang, Ling;Zhang, Feng
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.136-144
    • /
    • 2014
  • Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.