• Title/Summary/Keyword: Genomic Selection

Search Result 223, Processing Time 0.034 seconds

Study on Genetic Evaluation using Genomic Information in Animal Breeding - Simulation Study for Estimation of Marker Effects (가축 유전체정보 활용 종축 유전능력 평가 연구 - 표지인자 효과 추정 모의실험)

  • Cho, Chung-Il;Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This simulation study was performed to investigate the accuracy of the estimated breeding value by using genomic information (GEBV) by way of Bayesian framework. Genomic information by way of single nucleotide polymorphism (SNP) from a chromosome with length of 100cM were simulated with different marker distance (0.1cM, 0.5cM), heritabilities (0.1, 0.5) and half sibs families (20 heads, 4 heads). For generating the simulated population in which animals were inferred to genomic polymorphism, we assumed that the number of quantitative trait loci (QTL) were equal with the number of no effect markers. The positions of markers and QTLs were located with even and scatter distances, respectively. The accuracies of estimated breeding values by way of indicating correlations between true and estimated breeding values were compared on several cases of marker distances, heritabilities and family sizes. The accuracies of breeding values on animals only having genomic information were 0.87 and 0.81 in marker distances of 0.1cM and 0.5cM, respectively. These accuracies were shown to be influenced by heritabilities (0.87 at $h^2$ =0.10, 0.94 at $h^2$ =0.50). According to half sibs' family size, these accuracies were 0.87 and 0.84 in family size of 20 and 4, respectively. As half sibs family size is high, accuracy of breeding appeared high. Based on the results of this study it is concluded that the amount of marker information, heritability and family size would influence the accuracy of the estimated breeding values in genomic selection methodology for animal breeding.

Discovery of Performance Traits-Linked Microsatellite Markers in Channel Catfish (Ictalurus punctatus)

  • Kim, Soon-Hag
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.130-132
    • /
    • 2005
  • Genomics research has two ultimate applied goals: to Isolate and clone genes of economic importance for bio-technology and gene-assisted selection (GAS), and to locate and use markers for marker-assisted selection (MAS) in selective breeding programs. To this end, we have identified linked markers for feed conversion efficiency growth rate, and disease resistance to enteric septicemia of catfish (ESC). Three microsatellite markers Ip266, Ip384, and Ip607 were identified to be linked to feed conversion efficiency. Similarly one marker each was identified to be linked to growth rate (Ip607) and disease resistance to ESC (Ip477). Ip607 marker linked to both growth rate and feed conversion efficiency, indicating that the QTL for both growth rate and feed conversion efficiency may either be the same or located in the same chromosomal region in the catfish genome. On phenotypic evaluation, certain traits such as growth rate can be accurately evaluated by body weight evaluation while other traits such as disease resistance can be quite complex. The linked DNA markers will be highly useful for MAS programs and for directing further efforts of genomic mapping for important quantitative traits.

Genomic Regions associated with Necrotic Enteritis Resistance in Fayoumi and White Leghorn Chickens

  • Kim, Eui-Soo;Lillehoj, Hyun S.;Sohn, Sea Hwan;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In this study, we used two breeds of chicken to identify genomic regions corresponding to necrotic enteritis (NE) resistance. We scanned the genomes of a resistant and susceptible line of Fayoumi and White Leghorn chickens (20 birds/line) using a chicken 60 K Illumina SNP panel. A total of 235 loci with divergently fixed alleles were identified across the genome in both breeds; particularly, several clusters of multiple loci with fixed alleles were found in five narrow regions. Moreover, consensus 15-SNP haplotypes that were shared by the resistant lines of both breeds were identified on chromosomes 3, 7 and 9. Genes responsible for NE resistance were identified in chicken lines selected for resistance and susceptibility. Annotation of the regions spanning clustered divergently fixed regions revealed a set of interesting candidate genes such as phosphoinositide-3-kinase, regulatory subunit 5, p101 (PIK3R5) and inositol 1,4,5-trisphosphate receptor 1 (ITPR1), which participate in immune response. Consensus haplotypes were found in regions containing possibly relevant genes, such as myostatin and myosin, which play important roles in muscle development. Thus, genome scans of divergent selection in multiple chicken lines and breeds can be used to identify genomic regions associated with NE resistance.

An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

  • Cho, Sung-Yup;Kang, Wonyoung;Han, Jee Yun;Min, Seoyeon;Kang, Jinjoo;Lee, Ahra;Kwon, Jee Young;Lee, Charles;Park, Hansoo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2016
  • Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.

Luzhong mutton sheep: inbreeding and selection signatures

  • Tao, Lin;He, Xiaoyun;Wang, Fengyan;Zhong, Yingjie;Pan, Linxiang;Wang, Xiangyu;Gan, Shangquan;Di, Ran;Chu, Mingxing
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.777-789
    • /
    • 2020
  • Intense artificial selection has been imposed to Luzhong mutton sheep population in the past years. Improvements on growth and reproductive performance are two breeding goals in the present herd. Although some progresses were phenotypically observed possibly due to inbreeding induced by strong selection in terms of these traits, the genomic evaluation was poorly understood. Therefore, a high-density SNP array was used to characterize the pattern of runs of homozygosity (ROH), estimate inbreeding and inbreeding depressions on early growth performance and litter size based upon ROH, and scan positive selection signatures of recent population. Consequently, a low inbreeding level was observed which had negative effects on litter size, but not on early growth performance. And 160 genes were under selection, of which some were reported to be linked to several traits of sheep including body weight, litter size, carcass and meat quality, milk yield and composition, fiber quality and health, and the top genes were associated with growth (growth hormone [GH]- growth hormone receptor [GHR]- Insulin-like growth factor 1 [IGF1] axis) and litter size (bone morphogenic proteins [BMPs]-associated). The effectiveness of previous breeding measures was highlighted, but purging selection was proposed to alleviate the inbreeding depression on litter size, providing some genomic insights to breeding management of Luzhong mutton sheep.

The characteristics of bovine satellite cells with highly scored genomic estimated breeding value

  • Jae Ho Han;Ji Suk Yu;Do Hyun Kim;Hyun Woo Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.177-187
    • /
    • 2023
  • Background: The grading of Hanwoo (Korean native cattle) is based on four economic traits, and efforts have been continuously made to improve the genetic traits associated with these traits. There is a technology to predict the expected grade based on the 4 economic genetic SNP characteristics of Korean cattle calves using single nucleotide polymorphism (SNP) technology. Selection of highly proliferative, self-renewing, and differentiating satellite cells from cattle is a key technology in the cultured meat industry. Methods: We selected the Hanwoo with high and low-scored of genomic estimated breeding value (GEBV) by using the Hanwoo 50K SNP bead chip. We then isolated the bovine satellite cells from the chuck mass. We then conducted comparative analyses of cell proliferation, immunocytochemistry, qRT-PCR at short- and long-term culture. We also analyzed the differentiation capability at short term culture. Results: Our result showed that the proliferation was significantly high at High scored GEBV (Hs-GEBV) compared to Low scored GEBV (Ls-GEBV) at short- and long-term culture. The expression levels of Pax3 were significantly higher in Hs-GEBV bovine satellite cells at long-term culture. However, there were no significant differences in the expression levels of Pax7 between Hs- and Ls-GEBV bovine satellite cells at short- and long- term culture. The expression levels of MyoG and MyHC were significantly high at Ls-GEBV bovine satellite cells. Conclusions: Our results indicated that selection of bovine satellite cells by Hanwoo 50K SNP bead chip could be effective selection methods for massive producing of satellite cells.

Genomic and Transgenic Approaches to Modified Plants: Disease Resistance in the Brassica as a Model System.

  • Ekuere, Usukuma;Good, Allen G.;Mayerhofer, Reinhold
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.317-323
    • /
    • 2000
  • Molecular genetic techniques can now be applied to the development of advanced plant genotypes, either through genetic transformation or genomic approaches which allow researchers to transfer specific traits using molecular markers. In this paper, we discuss the use of these techniques towards understanding the genetics of blackleg resistance in Brassica. In a comparative mapping study between Arabidopsis thaliana and Brassica napus, 6 R-ESTs, 7 B. napus RFLP markers and a B. napus EST were located in a collinear region of N7 (B. napus) and chromosome 1 (A. thaliana). One of the A. thaliana R-ESTs and 4 of the B. napus RFLPs co-segregated and mapped to the LmRl locus for blackleg resistance. Introgression of blackleg resistance from wild relatives is also investigated with the possibility of accelerating the introgression process via marker assisted selection.

  • PDF

The +1316 T/T Genotype in the Exon 3 of Uncoupling Protein Gene is Associated with Daily Percent Lay in Korean Native Chicken (한국 재래 닭의 Uncoupling Protein 유전자 Exon 3에서의 +1316 T/T 유전자형이 산란율에 미치는 효과 분석)

  • Oh J. D.;Lee J. H.;Hong Y. S.;Lee S. J.;Lee S. G.;Kong H. S.;Sang B. D.;Choi C. H.;Cho B. W.;Jeon G. J.;Lee H. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • Uncoupling protein(UCP) is expressed exclusively in brown adipose tissue(BAT). It is blown to uncouple phosphorylation from oxidation and hence to be involved in energy metabolism and heat production, especially under cold exposure. In the present study, we identified single nucleotide polymorphism(SNP) in exon 3 of avUCP gene in Korean native chicken(KNC) population. It was detected a SNP T+1316C in exon 3 of avUCP gene by sequence analysis in KNC population. For PCR-RFLP analysis of the SNP T+1316C, used by AP III restriction enzyme. The result of PCR-RFLP analysis showed that allele T has two fragments of 255 bp and 86 bp, and allele C has only one fragment of 341 bp. The genotype frequencies were TT type, 0.7875; TC type, 0.1875 and CC type, 0.025; and the frequencies of allele T and C were 0.881 and 0.119, respectively in KNC population. Next study was conducted to investigate the effect of the SNP in avUCP gene on economic traits in the KNC population. The TT genotype had a significant higher daily percent lay(84.61) than CC genotype(p<0.05) in KNC population. This study may be useful for genetic studies of avCUP gene and selection on daily percent lay of KNC.

Effect of single nucleotide polymorphism on the total number of piglets born per parity of three different pig breeds

  • Do, Kyoung-Tag;Jung, Soon-Woo;Park, Kyung-Do;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.628-635
    • /
    • 2018
  • Objective: To determine the effects of genomic breeding values (GBV) and single nucleotide polymorphisms (SNP) on the total number of piglets born (TNB) in 3 pig breeds (Berkshire, Landrace, and Yorkshire). Methods: After collecting genomic information (Porcine SNP BeadChip) and phenotypic TNB records for each breed, the effects of GBV and SNP were estimated by using single step best linear unbiased prediction (ssBLUP) method. Results: The heritability estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were 0.078, 0.107, and 0.121, respectively. The breeding value estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were in the range of -1.34 to 1.47 heads, -1.79 to 1.87 heads, and -2.60 to 2.94 heads, respectively. Of sows having records for TNB, the reliability of breeding value for individuals with SNP information was higher than that for individuals without SNP information. Distributions of the SNP effects on TNB did not follow gamma distribution. Most SNP effects were near zero. Only a few SNPs had large effects. The numbers of SNPs with absolute value of more than 4 standard deviations in Berkshire, Landrace, and Yorkshire breeds were 11, 8, and 19, respectively. There was no SNP with absolute value of more than 5 standard deviations in Berkshire or Landrace. However, in Yorkshire, four SNPs (ASGA 0089457, ASGA0103374, ALGA0111816, and ALGA0098882) had absolute values of more than 5 standard deviations. Conclusion: There was no common SNP with large effect among breeds. This might be due to the large genetic composition differences and the small size of reference population. For the precise evaluation of genetic performance of individuals using a genomic selection method, it may be necessary to establish the appropriate size of reference population.

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.