• Title/Summary/Keyword: Genomic BLAST

Search Result 64, Processing Time 0.025 seconds

Construction of BLAST Server for Mollusks (연체동물 전용 서열 블라스트 서버구축)

  • Lee, Yong-Seok;Jo, Yong-Hun;Kim, Dae-Soo;Kim, Dae-Won;Kim, Min-Young;Choi, Sang-Haeng;Yon, Jei-Oh;Byun, In-Sun;Kang, Bo-Ra;Jeong, Kye-Heon;Park, Hong-Seog
    • The Korean Journal of Malacology
    • /
    • v.20 no.2
    • /
    • pp.165-169
    • /
    • 2004
  • The BLAST server for the mollusk was constructed on the basis of the Intel Server Platform SC-5250 dual Xeon 2.8 GHz cpu and Linux operating system. After establishing the operating system, we installed NCBI (National Center for Biotechnology Information) WebBLAST package after web server configuration for cgi (common gate interface) (http://chimp.kribb.re.kr/mollusks). To build up the stand alone blast, we conducted as follows: First, we downloaded the genome information (mitochondria genome information), DNA sequences, amino acid sequences related with mollusk available at NCBI. Second, it was translated into the multifasta format that was stored as database by using the formatdb program provided by NCBI. Finally, the cgi was used for the Stand Alone Blast server. In addition, we have added the vector, Escherichia coli, and repeat sequences into the server to confirm a potential contamination. Finally, primer3 program is also installed for the users to design the primer. The stand alone BLAST gave us several advantages: (1) we can get only the data that agree with the nucleotide sequence directly related with the mollusks when we are searching BLAST; (2) it will be very convenient to confirm contamination when we made the cDNA or genomic library from mollusks; (3) Compared to the current NSBI, we can quickly get the BLAST results on the mollusks sequence information.

  • PDF

Identification of a Carduus spp. Showing Anti-Mycobacterial Activity by DNA Sequence Analysis of Its ITS1, 5.8S rRNA and ITS2 (Mycobacteria에 대해 항균력을 나타내는 엉겅퀴의 분류를 위한 ITS1, 5.8S rRNA, ITS2의 염기서열 분석)

  • Bae, Young-Min
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.578-583
    • /
    • 2010
  • It has been reported that extracts of globe thistle (Echinops spp.) and thistle (Circium spp., Carduus spp. and Onopordum spp.) have anti-bacterial and anti-fungal activities. Methanol extracts of Echinops setifer and Carduus spp. were used to test and see if the extracts of these plants could suppress growth of Mycobacterium smegmatis and Mycobacterium fortuitum. Although extract of Echinops setifer showed no anti-mycobacterial activities, extract of Carduus spp. showed inhibition zones when tested with filter discs. Genomic DNA was isolated from Carduus spp. and PCR was performed to clone a DNA fragment containing ITS1, 5.8S rRNA gene and ITS2. A 733-bp PCR product was obtained and its DNA sequence was reported to the GenBank (accession number GU188570). BLAST search of the obtained DNA sequence did not show a match with any DNA sequences in the Genbank. Carduus crispus and Carduus defloratus had the closest phylogenetic relationships to this plant.

PCR Cloning of Genes Encoding the Mn-Peroxidase Isozyme Family from Trametes versicolor KN9522 Using Degenerate Primers (구름버섯균 KN9522에서 degenerate primer를 이용한 Mn-Peroxidase 동위효소 유전자들의 PCR 클로닝)

  • Jun, Sang-Cheol;Kim, Kyu-Joong
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • Degenerate primers corresponding to the sequences of the N-terminal regions of Mn-peroxidase isozymes were used to isolate the genomic fragments encoding the isozymes of Mn-peroxidase, CVMP1, CVMP2, CVMP3 and CVMP5 from the white-rot fungus Trametes versicolor KN9522. Three isozymes except one gave the expected PCR products (cmp1, cmp2 and cmp5) of about 900 base pairs, respectively. DNA sequence data obtained from each PCR products were used to analyze the BLAST program search on the National Center for Biotechnology Information. cmp1, cmp2 and cmp5 were similar to MPG-I (GenBank accession number Z30668) and PGV-II (GenBank accession number, Z54279) gene T. versicolor PRL572. PCR products of cmp1 and cmp2 showed 77%, 95% base sequence similarities to MPG-I gene and cmp5 showed about 88% similarity to PGV-II gene from T. versicolor PRL572. From this experiment, we could isolate genomic DNA fragments with degenerate primers designed from the N-terminal amino acid sequences of Mn-peroxidase isozyme family.

The Specific Probes Confirming the Genomic DNA of Tricholoma matsutake in Korea (송이의 Genomic DNA에 특이적인 Probe)

  • Lee, Sang-Sun;Hong, Sung-Woon;Chung, Hung-Chae;Sung, Chang-Kun;Kim, Jae-Hun;Ka, Kang-Hyeon;Kim, Hyun-Joong
    • The Korean Journal of Mycology
    • /
    • v.27 no.1 s.88
    • /
    • pp.20-26
    • /
    • 1999
  • The specific DNA band appeared in PCR-RAPD analysis using OPO-2 primer was a very important for the researching Korean pine-mushrooms, Tricholoma matsutake. This DNA band, sequenced to be the 770 base pairs, existed as only a single copy in the whole genomic DNA's of Korean pine-mushrooms. However, this band was not presenting from the PCR-RAPD bands of other ectomycorrhyzal fungi reacted with the OPO-2 primer or the dot blots. Also, this DNA sequence was not matched with those of the other genes known by NCBI and had low homology together with sequence of other proteins compared. Those results suggested that the specific DNA band can be used as probe for identification of T. matsutake and might be related to the informations rather than the gene for the proteins with analysis of protein sequence translated from the DNA sequence.

  • PDF

Development of Gene Based STS Markers in Wheat

  • Lee, Sang-Kyu;Heo, Hwa-Young;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study is to develop the gene based sequence tagged site (STS) markers in wheat. The euchromatin enriched genomic library was constructed and the STS primer sets were designed using gene based DNA sequence. The euchromatin enriched genomic (EEG) DNA library in wheat was constructed using the $Mcr$A and $Mcr$BC system in $DH5{\alpha}$ cell. The 2,166 EEG colonies have been constructed by methylated DNA exclusion. Among the colonies, 606 colonies with the size between 400 and 1200 bp of PCR products were selected for sequencing. In order to develop the gene based STS primers, blast analysis comparing between wheat genetic information and rice genome sequence was employed. The 227 STS primers mainly matched on $Triticum$ $aestivum$ (hexaploid), $Triticum$ $turgidum$ (tetraploid), $Aegilops$ (diploid), and other plants. The polymorphisms were detected in PCR products after digestion with restriction enzymes. The eight STS markers that showed 32 polymorphisms in twelve wheat genotypes were developed using 227 STS primers. The STS primers analysis will be useful for generation of informative molecular markers in wheat. Development of gene based STS marker is to identify the genetic function through cloning of target gene and find the new allele of target trait.

Application of genomics into rice breeding

  • Ando, Ikuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.13-13
    • /
    • 2017
  • By the progress of genome sequencing, infrastructures for marker-assisted breeding (MAB) of rice came to be established. Fine mapping and gene isolation have been conducted using the breeding materials derived from natural variations and artificial mutants. Such genetic analysis by the genome-wide dense markers provided us the knowledge about the many genes controlling important traits. We identified several genes or quantitative trait loci (QTL) for heading date, blast resistance, eating quality, high-temperature stress tolerance, and so on. NILs of each gene controlling heading date contribute to elongate the rice harvest period. Determination of precise gene location of blast resistance gene pi21, allowed us to overcome linkage drag, co-introduction of undesirable eating quality. We could also breed the first practical rice cultivar in Japan with a brown planthopper resistance gene bph11 in the genetic back-ground of an elite cultivar. Discovery of major and minor QTLs for good eating quality allowed us to fine-tune of eating quality according to the rice planting area or usage of rice grain. Many rice cultivars have bred efficiently by MAB for several traits, or by marker-assisted backcross breeding through chromosome segment substitution lines (CSSLs) using genetically diverse accessions. We are also systematically supporting the crop breeding of other sectors by MAB or by providing resources such as CSSLs. It is possible to pyramid many genes for important traits by using MAB, but is still difficult to improve the yielding ability. We are performing a Genomic Selection (GS) for improvement of rice biomass and grain yield. We are also trying to apply the genome editing technology for high yield rice breeding.

  • PDF

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

Construction of Web-Based Database for Anisakis Research (고래회충 연구를 위한 웹기반 데이터베이스 구축)

  • Lee, Yong-Seok;Baek, Moon-Ki;Jo, Yong-Hun;Kang, Se-Won;Lee, Jae-Bong;Han, Yeon-Soo;Cha, Hee-Jae;Yu, Hak-Sun;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.411-415
    • /
    • 2010
  • Anisakis simplex is one of the parasitic nematodes, and has a complex life cycle in crustaceans, fish, squid or whale. When people eat under-processed or raw fish, it causes anisakidosis and also plays a critical role in inducing serious allergic reactions in humans. However, no web-based database on A. simplex at the level of DNA or protein has been so far reported. In this context, we constructed a web-based database for Anisakis research. To build up the web-based database for Anisakis research, we proceeded with the following measures: First, sequences of order Ascaridida were downloaded and translated into the multifasta format which was stored as database for stand-alone BLAST. Second, all of the nucleotide and EST sequences were clustered and assembled. And EST sequences were translated into amino acid sequences for Nuclear Localization Signal prediction. In addition, we added the vector, E. coli, and repeat sequences into the database to confirm a potential contamination. The web-based database gave us several advantages. Only data that agrees with the nucleotide sequences directly related with the order Ascaridida can be found and retrieved when searching BLAST. It is also very convenient to confirm contamination when making the cDNA or genomic library from Anisakis. Furthermore, BLAST results on the Anisakis sequence information can be quickly accessed. Taken together, the Web-based database on A. simplex will be valuable in developing species specific PCR markers and in studying SNP in A. simplex-related researches in the future.

Isolation of Mutants Susceptible to Rice Blast from DEB-treated Rice Population (DEB 처리에 의해 유도된 벼 돌연변이 집단으로부터 도열병 감수성 돌연변이 분리)

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Han, Mu-Ho;Jeon, Yong-Hee;Lee, Gi-Hwan;Lee, Youn-Hyung;Bhoo, Seong-Hee;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.339-344
    • /
    • 2005
  • Rice blast, which is caused by the fungus Magnaporthe grisea, is one of the most destructive diseases of rice. To identify genes involving in the signal transduction pathways that mediate rice blast resistance, we screened over 2,000 mutant lines of a highly resistant variety RIL260 that were generated by using a DEB (1, 3-Butadiene diepoxide) treatment method. In the mutant population, the frequency of albino plants was 6.7%, indicating that this population has a high frequency of mutations in the genome. The primary screening identified 29 mutant plants that exhibit a complete or partial loss of the resistance to rice blast. Among them, M5465, the most susceptible line, was subsequently examined by DNA gel-blot experiments using DNA molecular markers of Pi5(t) that has been previously identified as a durable resistance locus in RIL260. The result revealed that a large deletion and rearrangement of genomic DNA occurred in the Pi5(t) locus. The results suggest that DEB can be used as an efficient mutagen to induce large scale mutations in the rice genome. The isolated mutants should be useful for elucidating the Pi5(t)-mediated signaling pathways of rice blast resistance.