• Title/Summary/Keyword: Genome-wide

Search Result 690, Processing Time 0.041 seconds

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain

  • Attila, Zsolnai;Istvan, Egerszegi;Laszlo, Rozsa;David, Mezoszentgyorgyi;Istvan, Anton
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.10-18
    • /
    • 2023
  • Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.

Association between a Genetic Variant of CACNA1C and the Risk of Schizophrenia and Bipolar I Disorder Across Diagnostic Boundaries (조현병과 제1형 양극성장애의 진단 경계를 넘어선 공통적 후보유전자로서의 CACNA1C에 대한 단일염기다형성 연합 연구)

  • Lee, Bora;Baek, Ji Hyun;Cho, Eun Young;Yang, So-Yung;Choi, Yoo Jin;Lee, Yu-Sang;Ha, Kyooseob;Hong, Kyung Sue
    • Korean Journal of Schizophrenia Research
    • /
    • v.21 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Objectives : Genome-wide association studies (GWASs) and meta-analyses indicate that single-nucleotide polymorphisms (SNPs) in the a-1C subunit of the L-type voltage-dependent calcium channel (CACNA1C) gene increase the risk for schizophrenia and bipolar disorders (BDs). We investigated the association between the genetic variants on CACNA1C and schizophrenia and/or BDs in the Korean population. Methods : A total of 582 patients with schizophrenia, 336 patients with BDs consisting of 179 bipolar I disorder (BD-I) and 157 bipolar II disorder (BD-II), and 502 healthy controls were recruited. Based on previous results from other populations, three SNPs (rs10848635, rs1006737, and rs4765905) were selected and genotype-wise association was evaluated using logistic regression analysis under additive, dominant and recessive genetic models. Results : rs10848635 showed a significant association with schizophrenia (p=0.010), the combined schizophrenia and BD group (p=0.018), and the combined schizophrenia and BD-I group (p=0.011). The best fit model was dominant model for all of these phenotypes. The association remained significant after correction for multiple testing in schizophrenia and the combined schizophrenia and BD-I group. Conclusion : We identified a possible role of CACNA1C in the common susceptibility of schizophrenia and BD-I. However no association trend was observed for BD-II. Further efforts are needed to identify a specific phenotype associated with this gene crossing the current diagnostic categories.

Comparative assessment of the effective population size and linkage disequilibrium of Karan Fries cattle revealed viable population dynamics

  • Shivam Bhardwaj;Oshin Togla;Shabahat Mumtaz;Nistha Yadav;Jigyasha Tiwari;Lal Muansangi;Satish Kumar Illa;Yaser Mushtaq Wani;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.795-806
    • /
    • 2024
  • Objective: Karan Fries (KF), a high-producing composite cattle was developed through crossing indicine Tharparkar cows with taurine bulls (Holstein Friesian, Brown Swiss, and Jersey), to increase the milk yield across India. This composite cattle population must maintain sufficient genetic diversity for long-term development and breed improvement in the coming years. The level of linkage disequilibrium (LD) measures the influence of population genetic forces on the genomic structure and provides insights into the evolutionary history of populations, while the decay of LD is important in understanding the limits of genome-wide association studies for a population. Effective population size (Ne) which is genomically based on LD accumulated over the course of previous generations, is a valuable tool for e valuation of the genetic diversity and level of inbreeding. The present study was undertaken to understand KF population dynamics through the estimation of Ne and LD for the long-term sustainability of these breeds. Methods: The present study included 96 KF samples genotyped using Illumina HDBovine array to estimate the effective population and examine the LD pattern. The genotype data were also obtained for other crossbreds (Santa Gertrudis, Brangus, and Beefmaster) and Holstein Friesian cattle for comparison purposes. Results: The average LD between single nucleotide polymorphisms (SNPs) was r2 = 0.13 in the present study. LD decay (r2 = 0.2) was observed at 40 kb inter-marker distance, indicating a panel with 62,765 SNPs was sufficient for genomic breeding value estimation in KF cattle. The pedigree-based Ne of KF was determined to be 78, while the Ne estimates obtained using LD-based methods were 52 (SNeP) and 219 (genetic optimization for Ne estimation), respectively. Conclusion: KF cattle have an Ne exceeding the FAO's minimum recommended level of 50, which was desirable. The study also revealed significant population dynamics of KF cattle and increased our understanding of devising suitable breeding strategies for long-term sustainable development.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Association of Six Susceptibility Loci with Prostate Cancer in Northern Chinese Men

  • Zhang, Yu-Rong;Xu, Yong;Yang, Kuo;Liu, Ming;Wei, Dong;Zhang, Yao-Guang;Shi, Xiao-Hong;Wang, Jian-Ye;Yang, Fan;Wang, Xin;Liang, Si-Ying;Zhao, Cheng-Xiao;Wang, Fei;Chen, Xin;Sun, Liang;Zhu, Xiao-Quan;Zhu, Ling;Yang, Yi-Ge;Tang, Lei;Jiao, Hai-Yan;Huo, Zheng-Hao;Yang, Ze
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6273-6276
    • /
    • 2012
  • Background/Aim: Six prostate cancer (PCa) susceptibility loci were identified in a genome-wide association study (GWAS) in populations of European decent. However, the associations of these 6 single-nucleotide polymorphisms (SNPs) with PCa has remained tobe clarified in men in Northern China. This study aimed to explore the loci associated with PCa risk in a Northern Chinese population. Methods: Blood samples and clinical information of 289 PCa patients and 288 controls from Beijing and Tianjin were collected. All risk SNPs were genotyped using polymerase chain reaction (PCR)-high resolution melting curve technology and gene sequencing. Associations between PCa and clinical covariates (age at diagnosis, prostate-specific antigen [PSA], Gleason score, tumor stage, and level of aggressiveness) and frequencies of alleles and genotypes of these SNPs were analyzed using genetic statistics. Results: Among the candidate SNPs, 11p15 (rs7127900, A) was associated with PCa risk (P = 0.02, odds ratio [OR] = 1.64, 95% confidence interval [CI] = 1.09-2.46). Genotypes showed differences between cases and controls on 11p15 (rs7127900, A), 11q13 (rs7931342, T), and HNF1B (rs4430796, A) (P = 0.03, P = 0.01, and P = 0.04, respectively). The genotype TG on 11q13 (rs7931342, T) was positively associated with an increased Gleason score (P = 0.04, OR = 2.15, 95% CI = 1.02-4.55). Patients carrying TG on 17q24 (rs1859962, G) were negatively associated with an increased body mass index (BMI) (P = 0.03, OR = 0.44, 95% CI = 0.21-0.92) while those with AG on HNF1B (rs4430796, A) were more likely to have PSA increase (P = 0.002). Conclusion: Our study suggests that 11p15 (rs7127900, A) could be a susceptibility locus associated with PCa in Northern Chinese. Genotype TG on 11q13 (rs7931342, T) could be related to an increased Gleason score, AG on HNF1B (rs4430796, A) could be associated with PSA increase, and TG on 17q24 (rs1859962, G) could be negatively associated with an increased BMI in Chinese men with PCa.

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis (Microarray와 Network 분석을 통한 병원균 및 스트레스 저항성 관련 주요 유전자의 대량 발굴)

  • Kim, Hyeongmin;Moon, Suyun;Lee, Jinsu;Bae, Wonsil;Won, Kyungho;Kim, Yoon-Kyeong;Kang, Kwon Kyoo;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis $4{\times}44K$ oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 down-regulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.

Rapid prenatal diagnosis of Down syndrome and Edward syndrome by fluorescence In situ hybridization : Clinical experience with 309 cases (FISH를 이용한 다운증후군과 에드워드증후군의 신속한 산전확인 : 309예의 임상적 고찰)

  • Kang, Jin-Hee;Lee, Sook-Hwan;Park, Sang-Hee;Park, Ji-Hyun;Kim, Ji-Youn;Han, Won-Bo;Kim, In-Hyun;Park, Sang-Won;Jang, Jin-Beum;Lee, Kyoung-Jin;Park, Hee-Jin;Jun, Hye-Sun;Lee, Kyung-Ju;Shin, Joong-Sik;Cha, Dong-Hyun
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • Purpose : The purpose of this study was to evaluate the clinical utility of rapid detection of Down syndrome and Edward syndrome by Interphase Fluorescence in Situ Hybridization (FISH) analysis. Methods : Aretrospective study in 309 cases of amniotic fluid samples, analysed by interphase FISH with DNA probes specific to chromosome 18 and 21, was performed. All FISH results w ere compared with conventional cytogenetic karyotypings. Results : The results were considered as informative and they were obtained within 48 hrs. A case of Down syndrome and a case of Edward syndrome were diagnosed by FISH and confirmed by subsequent cytogenetic analysis. In 12 cases with normal FISH results, the cytogenetic analysis showed a case of partial trisomy 22, three cases of sex chromosomal aneuploidy, two cases of mosaicism, two cases of microdeletion, and four cases of structural rearrangement. Conclusion : FISH is a rapid and effective diagnostic method, which can be used as an adjunctive test to cytogenetic analysis, for prenatal identification of chromosome aneuploidies. For the more genome-wide screening with variety of probes, the technique of FISH is both expensive and labor-intensive.

  • PDF