• Title/Summary/Keyword: Genome Length

Search Result 347, Processing Time 0.034 seconds

Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis

  • Park, Young-Jin;Kong, Won-Sik
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Whole-genome sequencing of Flammulina ononidis, a wood-rotting basidiomycete, was performed to identify genes associated with carbohydrate-active enzymes (CAZymes). A total of 12,586 gene structures with an average length of 2009 bp were predicted by the AUGUSTUS tool from a total 35,524,258 bp length of de novo genome assembly (49.76% GC). Orthologous analysis with other fungal species revealed that 7051 groups contained at least one F. ononidis gene. In addition, 11,252 (89.5%) of 12,586 genes for F. ononidis proteins had orthologs among the Dikarya, and F. ononidis contained 8 species-specific genes, of which 5 genes were paralogous. CAZyme prediction revealed 524 CAZyme genes, including 228 for glycoside hydrolases, 21 for polysaccharide lyases, 87 for glycosyltransferases, 61 for carbohydrate esterases, 87 with auxiliary activities, and 40 for carbohydrate-binding modules in the F. ononidis genome. This genome information including CAZyme repertoire will be useful to understand lignocellulolytic machinery of this white rot fungus F. ononidis.

First Record of the Complete Mitochondrial Genome of a Saprotrophic and Opportunistic Human Pathogenic Fungus, Scopulariopsis brevicaulis

  • Park, Jongsun;Kwon, Woochan;Hong, Seung-Beom;Han, Kap-Hoon
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.528-531
    • /
    • 2020
  • Scopulariopsis brevicaulis is a widely distributed soil fungus known as a common saprotroph of biodegradation. It is also an opportunistic human pathogen that can produce various secondary metabolites. Here, we report the first complete mitochondrial genome sequence of S. brevicaulis isolated from air in South Korea. Total length of the mitochondrial genome is 28,829 bp and encoded 42 genes (15 protein-coding genes, 2 rRNAs, and 25 tRNAs). Nucleotide sequence of coding region takes over 26.2%, and overall GC content is 27.6%. Phylogenetic trees present that S. brevicaulis is clustered with Lomentospora prolificans with presenting various mitochondrial genome length.

Identification of SNPs Related to 19 Phenotypic Traits Using Genome-wide Association Study (GWAS) Approach in Korean Wheat Mini-core Collection

  • Yuna Kang;Yeonjun Sung;Seonghyeon Kim;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Based on the simple sequence repeat (SSR) marker, a Korean wheat core collection were established with 616 wheat accessions. Among them, the SNP genotyping for the entire genome was performed using DNA chip array to clarify the whole genome SNP profiles. Consequently, a total of 35,143 SNPs were found and we re-established a mini-core collection with 247 accessions. Population diversity and phylogenetic analysis revealed genetic diversity and relationships from the mini core set. In addition, genome-wide association study (GWAS) was performed on 19 phenotypic traits; ear type, awn length, culm length, ear length, awn color, seed coat color, culm color, ear color, loading, leaf length, leaf width, seeding stand, cold damage, weight, auricle, plant type, heading stage, maturation period, upright habit, and degree of flag leaf. The GWAS was performed using the fixed and random model circulating probability unification (FarmCPU), which identified 14 to 258 SNP loci related to 19 phenotypic traits. Our study indicates that this Korean wheat mini-core collection is a set of germplasm useful for basic and applied research with the aim of understanding and exploiting the genetic diversity of Korean wheat varieties.

  • PDF

Determination of Complete Genome Sequence of Korean Isolate of Potato virus X

  • Choi, Sun-Hee;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.361-364
    • /
    • 2008
  • The complete nucleotide sequences of a Korean isolate of Potato virus X(PVX-Kr) has been determined. Full-length cDNA of PVX-Kr has been directly amplified by long template reverse transcription and polymerase chain reaction(RT-PCR) using virus specific 5'-end primer and 3'-end primer, and then constructed in a plasmid vector. Consecutive subclones of a full-length cDNA clone were constructed to identify whole genome sequence of the virus. Total nucleotide sequences of genome of PVX-Kr were 6,435 excluding one adenine at poly A tail, and genome organization was identical with that of typical PVX species. Comparison of whole genome sequence of PVX-Kr with those of European and South American isolates showed 95.4-96.8% and 77.4-77.9%, in nucleotide similarity, respectively. Sequenced PVX-Kr in this study and twelve isolates already reported could be divided into two subgroups in phylogeny based on their complete nucleotide sequences. Phylogenetic tree analysis demonstrated that PVX-Kr was clustered with European and Asian isolates(Taiwan, os, bs, Kr, S, X3, UK3, ROTH1, Tula) in the same subgroup and South American isolates(CP, CP2, CP4, HB) were clustered in the other subgroup.

Bridging a Gap between DNA sequences and expression patterns of genes

  • Morishita, Shinichi
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.69-70
    • /
    • 2000
  • The completion of sequencing human genome would motivate us to map millions of human cDNAs onto the unique ruler "genome sequence", in order to identify the exact address of each cDNA together with its exons, its promoter region, and its alternative splicing patterns. The expression patterns of some cDNAs could therefore be associated with these precise gene addresses, which further accelerate studies on mining correlations between motifs of promoters and expressions of genes in tissues. Towards the realization of this goal, we have developed a time-and-space efficient software named SQUALL that is able to map one cDNA sequence of length a few thousand onto a long genome sequence of length thirty million in a couple of minutes on average. Using SQUALL, we have mapped twenty thousand of our Bodymap (http://bodymap.ims.u-tokyo.ac.jp) cDNAs onto the genome sequences of Chr.21st and 22nd. In this talk, I will report the status of this ongoing project.

  • PDF

An AFLP-based Linkage Map of Japanese Red Pine (Pinus densiflora) Using Haploid DNA Samples of Megagametophytes from a Single Maternal Tree

  • Kim, Yong-Yul;Choi, Hyung-Soon;Kang, Bum-Yong
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.201-209
    • /
    • 2005
  • We have constructed an AFLP-based linkage map of Japanese red pine (Pinus densiflora Siebold et Zucc.) using haploid DNA samples of 96 megagametophytes from a single maternal tree, selection clone Kyungbuk 4. Twenty-eight primer pairs generated a total of 5,780 AFLP fragments. Five hundreds and thirteen fragments were verified as genetic markers with two alleles by their Mendelian segregation. At the linkage criteria LOD 4.0 and maximum recombination fraction 0.25(${\theta}$), a total of 152 markers constituted 25 framework maps for 19 major linkage groups. The maps spanned a total length of 2,341 cM with an average framework marker spacing of 18.4 cM. The estimated genome size was 2,662 cM. With an assumption of equal marker density, 82.2% of the estimated genome would be within 10 cM of one of the 230 linked markers, and 68.1% would be within 10 cM of one of the 152 framework markers. We evaluated map completeness in terms of LOD value, marker density, genome length, and map coverage. The resulting map will provide crucial information for future genomic studies of the Japanese red pine, in particular for QTL mapping of economically important breeding target traits.

Complete chloroplast genome sequence of Clematis calcicola (Ranunculaceae), a species endemic to Korea

  • Beom Kyun PARK;Young-Jong JANG;Dong Chan SON;Hee-Young GIL;Sang-Chul KIM
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • The complete chloroplast genome (cp genome) sequence of Clematis calcicola J. S. Kim (Ranunculaceae) is 159,655 bp in length. It consists of large (79,451 bp) and small (18,126 bp) single-copy regions and a pair of identical inverted repeats (31,039 bp). The genome contains 92 protein-coding genes, 36 transfer RNA genes, eight ribosomal RNA genes, and two pseudogenes. A phylogenetic analysis based on the cp genome of 19 taxa showed high similarity between our cp genome and data published for C. calcicola, which is recognized as a species endemic to the Korean Peninsula. The complete cp genome sequence of C. calcicola reported here provides important information for future phylogenetic and evolutionary studies of Ranunculaceae.

Whole Genome Sequencing and Gene Prediction of Cynodon transvaalensis

  • Sol Ji Lee;Chang soo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.237-237
    • /
    • 2022
  • Cynodon transvaalensis belongs to the warm-season grasses and is one of the economically and ecologically important crops. Cynodon species with high heterozygosity are difficult to assemble, so genome research has not been actively conducted. In this study, hybrid assembly was performed by sequencing with Illumina and PacBio. As a result of the assembly, the number of scaffolds and the length of N50 were 1,392, 928 kb, respectively. The completeness of the assembly was confirmed by BSUCO at 98.3%. In addition, as a result of estimating the size of the assembled genome by K-mer analysis (k=25), it was approximately ~413 Mb. A total of 37,060 cds sequences were annotated in the assembled genome, and their functions were identified through blast. After that, we try to complete the assembled genome into a pseudochromosome-level genome through Hi-C technology. These results will not only help to understand the complex genome composition of african bermudagrass, but also provide a resource for genomic and evolutionary studies of grass and other plant species.

  • PDF

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.