DOI QR코드

DOI QR Code

First Record of the Complete Mitochondrial Genome of a Saprotrophic and Opportunistic Human Pathogenic Fungus, Scopulariopsis brevicaulis

  • Received : 2020.05.03
  • Accepted : 2020.09.09
  • Published : 2020.12.31

Abstract

Scopulariopsis brevicaulis is a widely distributed soil fungus known as a common saprotroph of biodegradation. It is also an opportunistic human pathogen that can produce various secondary metabolites. Here, we report the first complete mitochondrial genome sequence of S. brevicaulis isolated from air in South Korea. Total length of the mitochondrial genome is 28,829 bp and encoded 42 genes (15 protein-coding genes, 2 rRNAs, and 25 tRNAs). Nucleotide sequence of coding region takes over 26.2%, and overall GC content is 27.6%. Phylogenetic trees present that S. brevicaulis is clustered with Lomentospora prolificans with presenting various mitochondrial genome length.

Keywords

References

  1. Kirk P, Cannon P, Minter D, et al. Dictionary of the Fungi. 10th ed. Wallingford, UK; 2008.
  2. Kwon-Chung K, Bennett J. Infections due to miscellaneous molds. In: Kwon-Chung K, Bennett J, editors. Medical mycology. Philadelphia, PA: Lea & Febiger; 1992. p. 733-739.
  3. Samson R, Houbraken J, Thrane U, et al. Food and indoor fungi. CBS laboratory manual series 2. Utrecht: CBS-Fungal Biodiversity Centre; 2010.
  4. Issakainen J, Heikkil€a H, Vainio E, et al. Occurrence of Scopulariopsis and Scedosporium in nails and keratinous skin. A 5-year retrospective multi-center study. Med Mycol. 2007;45(3):201-209. https://doi.org/10.1080/13693780601103080
  5. Summerbell R, Kane J, Krajden S. Onychomycosis, tinea pedis and tinea manuum caused by non-dermatophytic filamentous fungi. Mycoses. 1989;32(12):609-619. https://doi.org/10.1111/j.1439-0507.1989.tb02192.x
  6. Tosti A, Piraccini B, Stinchi C, et al. Onychomycosis due to Scopulariopsis brevicaulis: clinical features and response to systemic antifungals. Br J Dermatol. 1996;135(5):799-802. https://doi.org/10.1111/j.1365-2133.1996.tb03895.x
  7. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, et al. Scopulariopsis brevicaulis, a fungal pathogen resistant to broad-spectrum antifungal agents. Antimicrob Agents Chemother. 2003;47(7):2339-2341. https://doi.org/10.1128/AAC.47.7.2339-2341.2003
  8. Kim D-H, Kim S-H, Kwon S-w, et al. The mycobiota of air inside and outside the meju fermentation room and the origin of meju fungi. Mycobiology. 2015;43(3):258-265. https://doi.org/10.5941/MYCO.2015.43.3.258
  9. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821-829. https://doi.org/10.1101/gr.074492.107
  10. Zhao Q-Y, Wang Y, Kong Y-M, et al. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinf. 2011;12(Suppl 14):S2.
  11. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  12. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2. 2013.
  13. Laslett D, Canb€ack B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24(2):172-175. https://doi.org/10.1093/bioinformatics/btm573
  14. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  15. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  16. Joardar V, Abrams NF, Hostetler J, et al. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics. 2012;13(1):698. https://doi.org/10.1186/1471-2164-13-698
  17. Xu Z, Wu L, Liu S, et al. Structure characteristics of Aspergillus egyptiacus mitochondrial genome, an important fungus during the fermentation of dark tea. Mitochondrial DNA Part B. 2018;3(2):1135-1136. https://doi.org/10.1080/23802359.2018.1521308
  18. Park J, Kwon W, Huang X, et al. Complete mitochondrial genome sequence of a xerophilic fungus Aspergillus pseudoglaucus. Mitochondrial DNA Part B. 2019;4(2):2422-2423. https://doi.org/10.1080/23802359.2019.1586468
  19. Park J, Kwon W, Kim J-B, et al. Complete mitochondrial genome sequence of lettuce pathogenic fungus, Fusarium oxysporum f. sp. lactucae 09-002. Mitochondrial DNA Part B. 2019;4(2):3434-3436. https://doi.org/10.1080/23802359.2019.1667902
  20. Brankovics B, van Dam P, Rep M, et al. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex. BMC Genomics. 2017;18(1):735. https://doi.org/10.1186/s12864-017-4116-5
  21. Kwon W, Park J, Kim J-B, et al. Complete mitochondrial genome sequence of lettuce pathogenic fungus, Fusarium oxysporum f. sp. lactucae 16-086. Mitochondrial DNA Part B. 2019;4(2):3227-3228. https://doi.org/10.1080/23802359.2019.1667903
  22. Chen Y, Qiao W, Zeng L, et al. Characterization, pathogenicity, and phylogenetic analyses of colletotrichum species associated with brown blight disease on Camellia sinensis in China. Plant Dis. 2017;101(6):1022-1028. https://doi.org/10.1094/PDIS-12-16-1824-RE

Cited by

  1. A Comparative Analyses of the Complete Mitochondrial Genomes of Fungal Endosymbionts in Sogatella furcifera, White-Backed Planthoppers vol.2021, 2020, https://doi.org/10.1155/2021/6652508
  2. Parasites and microbial infections of lamprey (order Petromyzontiformes Berg 1940): A review of existing knowledge and recent studies vol.47, pp.suppl1, 2020, https://doi.org/10.1016/j.jglr.2021.09.004