• Title/Summary/Keyword: Genome Analysis

Search Result 2,353, Processing Time 0.039 seconds

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.

Proteome Data Analysis of Hairy Root of Panax ginseng : Use of Expressed Sequence Tag Data of Ginseng for the Protein Identification (인삼 모상근 프로테옴 데이터 분석 : 인삼 EST database와의 통합 분석에 의한 단백질 동정)

  • Kwon, Kyung-Hoon;Kim, Seung-Il;Kim, Kyung-Wook;Kim, Eun-A;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Yang, Deok-Chun;Hur, Cheol-Goo;Yoo, Jong-Shin;Park, Young-Mok
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • For the hairy root of Panax ginseng, we have got mass spectrums from MALDI/TOF/MS analysis and Tandem mass spectrums from ESI/Q-TOF/MS analysis. While mass spectrum provides the molecular weights of peptide fragments digested by protease such as trypsin, tandem mass spectrum produces amino acid sequence of digested peptides. Each amino acid sequences can be a query sequence in BLAST search to identify proteins. For the specimens of animals or plants of which genome sequences were known, we can easily identify expressed proteins from mass spectrums with high accuracy. However, for the other specimens such as ginseng, it is difficult to identify proteins with accuracy since all the protein sequences are not available yet. Here we compared the mass spectrums and the peptide amino acid sequences with ginseng expressed sequence tag (EST) DB. The matched EST sequence was used as a query in BLAST search for protein identification. They could offer the correct protein information by the sequence alignment with EST sequences. 90% of peptide sequences of ESI/Q-TOF/MS are matched with EST sequences. Comparing 68% matches of the same sequences with the nr database of NCBI, we got more matches by 22% from ginseng EST sequence search. In case of peptide mass fingerprinting from MALDI/TOF/MS, only about 19% (9 proteins of 47 spots) among peptide matches from nr DB were correlated with ginseng EST DB. From these results, we suggest that amino acid sequencing using tandem mass spectrum analysis may be necessary for protein identification in ginseng proteome analysis.

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Identification and Sequence Analysis of RNA3 of a Resistance-Breaking Cucumber mosaic virus Isolate on Capsicum annuum

  • Lee Mi-Yeon;Lee Jang-Ha;Ahn Hong-Il;Yoon Ju-Yeon;Her Nam-Han;Choi Jang-Kyung;Choi Gug-Seon;Kim Do-Sun;Harn Chee-Hark;Ryu Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.265-270
    • /
    • 2006
  • Cultivated hot pepper crops showing severe mosaic symptom were found in Korea in 2004 and their causal agent was identified as Cucumber mosaic virus (CMV). These pepper crops was resistant to the virus in the filled, and they belonged to pathotype 0 (P0) resistant pepper. Resistance screening of selected pepper plants showed that a pepper isolate of CMV was the P0 resistance-breaking virus. This P0 resistance-breaking isolate of CMV, named as Ca-P1, was isolated from leaves of the virus-infected Capsicum annuum cv. Manidda that showed systemic severe mosaic symptom. Ca-P1-CMV could induce systemic mosaic symptoms on P0-susceptible (P0-S) and P0-resistant (P0-R) cultivars whereas an ordinary strain (Fny-CMV) could not infect P0-R. This result suggests that Ca-P1-CMV can overcome P0 resistant pepper cultivars. To analyze its genome sequence, the complete nucleotide sequence of RNA3 of Ca-P1-CMV was determined from the infectious full-length cDNA clone of the virus. RNA3 of Ca-P1-CMV consisted of 2,219 nucleotides. Overall sequence homology of RNA3-encoded two viral proteins (movement protein and coat protein) revealed high similarity (75.2-97.2%) with the known CMV strains. By sequence analysis with known representative strains of CMV, Ca-P1-CMV belongs to a typical member of CMV subgroup IB. The resistance and resistance-breaking mechanisms of pepper and counterpart CMV, respectively, remain to be investigated, which will enrich the genetic resources and accelerate CMV-resistant pepper breeding programs.

Allele Frequencies of the Single Nucleotide Polymorphisms Related to the Body Burden of Heavy Metals in the Korean Population and Their Ethnic Differences

  • Eom, Sang-Yong;Lim, Ji-Ae;Kim, Yong-Dae;Choi, Byung-Sun;Hwang, Myung Sil;Park, Jung-Duck;Kim, Heon;Kwon, Ho-Jang
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.195-205
    • /
    • 2016
  • This study was performed to select single nucleotide polymorphisms (SNPs) related to the body burden of heavy metals in Koreans, to provide Korean allele frequencies of selected SNPs, and to assess the difference in allele frequencies with other ethnicities. The candidate-gene approach method and genome-wide association screening were used to select SNPs related to the body burden of heavy metals. Genotyping analysis of the final 192 SNPs selected was performed on 1,483 subjects using the VeraCode Goldengate assay. Allele frequencies differences and genetic differentiations between the Korean population and Chinese (CHB), Japanese (JPT), Caucasian (CEU), and African (YIR) populations were tested by Fisher's exact test and fixation index ($F_{ST}$), respectively. The Korean population was genetically similar to the CHB and JPT populations ($F_{ST}$ < 0.05, for all SNPs in both populations). However, a significant difference in the allele frequencies between the Korean and CEU and YIR populations were observed in 99 SNPs (60.7%) and 120 SNPs (73.6%), respectively. Ten (6.1%) and 26 (16.0%) SNPs had genetic differentiation ($F_{ST}$ > 0.05) among the Korean-CEU and Korean-YIR comparisons, respectively. The SNP with the largest $F_{ST}$ value between the Korean and African populations was cystathionine-${\beta}$-synthase rs234709 ($F_{ST}$: KOR-YIR, 0.309; KOR-CEU, 0.064). Our study suggests that interethnic differences exist in SNPs associated with heavy metals of Koreans, and it should be considered in future studies that address ethnic differences in heavy-metal concentrations in the body and genetic susceptibility to the body burden of heavy metals.

Utility of Real Time RT-PCR for the Quantitative Detection of Minimal Residual Disease in Hematological Malignancy (백혈병 미세잔존질환 정량검출을 위한 실시간 역전사중합효소연쇄반응법의 유용성)

  • Cho, Jeung-Ai;Kim, Da-Woon;Jeong, Seong-Du;Cheon, Ji-Seon;Na, Gyeong-Ah;Kim, Hye-Ran;Kim, Jin-Gak;Kim, In-Hwan;Kim, Soo-Hyun;Shin, Myung-Geun;Kim, Hyeong-Rok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.1
    • /
    • pp.11-23
    • /
    • 2009
  • Chromosomal rearrangements are major pathology in hematological malignancies. The detection of minimal residual disease (MRD) for these gene rearrangements helps in monitoring treatment outcomes and predicting prognosis of patients. Recently, quantification of these gene transcripts based on real-time quantitative polymerase chain reaction (RQ-PCR) has been used as MRD detection. The purpose of this study is to ensure the usefulness of the RQ-PCR technique for detecting MRD in hamatological malignancy patients. The patients had been diagnosed to AML1-ETO positive AML, PML-RARa positive AML and BCR-ABL positive MPN at Chonnam National University Hwasun Hospital from Jan. 2006 to Aug. 2008. The fusion transcript was quntified by RQ-PCR and analyzed in comparison to conventional cytogenetics, FISH and RT-PCR. The fusion gene transcript was quantified by RQ-PCR in 57 samples from 14 patients with AML1-ETO positive AML, 79 samples from 27 patients with PML-RARa positive AML and 108 samples from 36 patients with CML. At diagnosis, the quantitative fusion transcripts for AM1-ETO, PML-RARa and BCR-ABL showed the range of 0.485552651~10.82233683 (mean 3.782217131, SD 2.998052348), 0.005300395~0.29267494 (mean 0.056901315, SD 0.080131381) and 0.1293929~12.94826849 (mean 1.701935665, SD 2.200913158). The increase of AML1-ETO fusion gene transcripts preceded morphologic relapse in two patients. Quantification of fusion gene transcripts by RQ-PCR could detected MRD in samples which were negative by in cytogenetic analysis or FISH. Our findings indicated that quantitative analysis of AML1-ETO, PML-RARa and BCR-ABL transcripts by RQ-PCR might be a useful tool for the monitoring of minimal residual disease in hematological malignancies.

  • PDF

Screening and Characterization of LTR Retrotransposons in the genomic DNA of Pleurotus eryngii (큰느타리버섯 유전체내 LTR Retrotransposon 유전자 탐색 및 특성연구)

  • Kim, Sinil;Le, Quy Vang;Kim, Sun-Mi;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Transposable elements (TEs) are mobile DNA elements that often cause mutations in genes and alterations in the chromosome structure. In order to identify and characterize transposable elements (TEs) in Pleurotus eryngii, a TE-enriched library was constructed using two sets of TE-specific degenerated primers, which target conserved sequences of RT and RVE domains in fungal LTR retrotransposons. A total of 256 clones were randomly chosen from the library and their insert sequences were determined. Comparative investigation of the insert sequences with those in repeat element database, Repbase, revealed that 71 of them were found to be TE-related fragments with significant similarity to LTR retrotransposons from other species. Among the TE sequences, the 70 TEs were Gypsy-type LTR retrotransposons, including 20 of MarY1 from Tricholoma matsutake, 26 of Gypsy-8_SLL from Serpula lacrymans, and 16 of RMER17D_MM from mouse, whereas a single sequence, Copia-48-PTR, was found as only Copia-type LTR retrotransposon. Southern blot analysis of the HindIII-digested P. eryngii genomic DNA showed that the retrotransposon sequences similar to MarY1 and Gypsy-8_SLL were contained as high as 14 and 18 copies per genome, respectively, whereas other retrotransposons were remained low. Moreover, both of the two Gypsy retrotransposons were expressed in full length mRNA as shown by Northern blot analysis, suggesting that they were functionally active retrotransposons.

Relationship between genetic mutations and diabetes in non-insulin dependent diabetic mellitus (NIDDM) (인슈린비의존성 당뇨병(NIDDM)에서 유전적 변이와 체질의학적 관계)

  • Kim, Cheorl-Ho;Lee, Tae-Kyun;Chong, Ji-Choen;Park, Won-Hwan;Kim, Yong-Ju;Kim, June-Ki;Park, Sun-Dong;Nam, Kyung-Soo;Kim, Yong Sung
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • A simple and rapid FoLT(formamide low temperature)-PCR, whereby human genomic DNA from blood can be amplified without DNA preparative stps, is described using human insulin genes. By applicatin of FoLT-PCR in human insulin genes, intragenic polymorphism in non-coding regions of the human insulin gene was shown after amplification and analysis by restriction enzyme digestion. All nucleotide sequences were the same as the reported, and four necleotides, at 4 different positions were polymorphic, and polymorphic alleles ${\alpha}4$, ${\alpha}5$, ${\alpha}6$, and ${\beta}2$ were identified. The new alleles were originated from homologous recombination between the ${\alpha}1$ and ${\beta}1$ alleles, and the alleles were founded in heterozygotes only. Although allele ${\alpha}1$ was dominant, the new alleles and ${\beta}1$ were recessive. From the results, it was suggested that the new method of FoLT-PCR was highly applicable in genetic variation analysis.

  • PDF

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system (벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법)

  • Jung, Yu Jin;Bae, Sangsu;Lee, Geung-Joo;Seo, Pil Joon;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

Characterization of Gibberellic Acid-Stimulated Arabidopsis (GASA) gene to drought stress response in Poplar (Populus alba × P. glandulosa) (현사시나무 Gibberellic Acid-Stimulated Arabidopsis (GASA) 유전자의 발현 특성 및 건조 스트레스 내성 구명)

  • Choi, Hyunmo;Bae, Eun-Kyung;Choi, Young-Im;Yoon, Seo-Kyung;Lee, Hyoshin
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Gibberellic Acid-Stimulated Arabidopsis (GASA) genes are involved in plant hormone signaling, cell division and elongation, as well as in responses to stress conditions in plants. In this study, we isolated a GASA gene from hybrid poplar (Populus alba ${\times}$ P. glandulosa) and analyzed its physiological phenotype and molecular functions in poplar. PagGASA cDNA encodes a putative protein composed of 95 amino acids containing an N-terminal signal peptide and a conservative cysteine-rich C-terminal domain. Southern blot analysis revealed that one or two copies of the PagGASA are present in the poplar genome. The PagGASA transcripts were highly detected in flowers and roots. Moreover, the expression of PagGASA was induced by growth hormone (gibberellic acid) and stress hormones (abscisic acid, jasmonic acid, and salicylic acid). By using transgenic analysis, we showed that the upregulation of PagGASA in poplar provides high tolerance to drought stress. Therefore, our results suggest that PagGASA plays an important role in drought stress tolerance via stress-related plant hormone signaling in poplar.