• Title/Summary/Keyword: Genome Analysis

Search Result 2,364, Processing Time 0.03 seconds

Pathogenesis and prognosis of primary oral squamous cell carcinoma based on microRNAs target genes: a systems biology approach

  • Taherkhani, Amir;Dehto, Shahab Shahmoradi;Jamshidi, Shokoofeh;Shojaei, Setareh
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.27.1-27.13
    • /
    • 2022
  • Oral squamous cell carcinoma (OSCC) is the most prevalent head and neck malignancy, with frequent cervical lymph-node metastasis, leading to a poor prognosis in OSCC patients. The present study aimed to identify potential markers, including microRNAs (miRNAs) and genes, significantly involved in the etiology of early-stage OSCC. Additionally, the main OSCC's dysregulated Gene Ontology annotations and significant signaling pathways were identified. The dataset GSE45238 underwent multivariate statistical analysis in order to distinguish primary OSCC tissues from healthy oral epithelium. Differentially expressed miRNAs (DEMs) with the criteria of p-value < 0.001 and |Log2 fold change| > 1.585 were identified in the two groups, and subsequently, validated targets of DEMs were identified. A protein interaction map was constructed, hub genes were identified, significant modules within the network were illustrated, and significant pathways and biological processes associated with the clusters were demonstrated. Using the GEPI2 database, the hub genes' predictive function was assessed. Compared to the healthy controls, main OSCC had a total of 23 DEMs. In patients with head and neck squamous cell carcinoma (HNSCC), upregulation of CALM1, CYCS, THBS1, MYC, GATA6, and SPRED3 was strongly associated with a poor prognosis. In HNSCC patients, overexpression of PIK3R3, GIGYF1, and BCL2L11 was substantially correlated with a good prognosis. Besides, "proteoglycans in cancer" was the most significant pathway enriched in the primary OSCC. The present study results revealed more possible mechanisms mediating primary OSCC and may be useful in the prognosis of the patients with early-stage OSCC.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Comparative mitogenomics of Pleurotus ostreatus Gonji7ho and its cap color mutant

  • Oh, Min-Ji;Na, Kyeong Sook;Jung, Hwa Jin;Lee, Young Kuk;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • Pleurotus ostreatus is a globally cultivated mushroom crop. Cap color is a quality factor in P. ostreatus. However, cap color can spontaneously mutate, degrading the quality of the mushroom on the market. Early detection and removal of mutant strains is the best way to maintain the commercial value of the crop. To detect the cap color mutant Gonji7ho, molecular markers were developed based on insertion/deletions (InDels) derived from the comparison of mitogenomes of Gonji7ho and Gonji7hoM mushrooms. Sequencing, assembly, and comparative analysis of the two mitogenomes revealed genome sizes of 73,212 bp and 72,576 bp with 61 and 57 genes or open reading frames (ORFs) in P. ostreatus Gonji7ho and Gonji7hoM, respectively. Fourteen core protein-encoding genes, two rRNA, and 24 tRNA with some OFRs were predicted. Of the 61 genes or OFRs in the wild type, dpo, rpo, and two orf139 were missing (or remnant) in the mutant strain. Molecular markers were developed based on the sequence variations (InDels) between the two mitogenomes. Six polymorphic molecular markers could detect the mutated mitochondria by PCR. These results provide basic knowledge of the mitogenomes of wild-type and mutant P. ostreatus, and can be applied to discriminate mutated mitochondria.

Biological and Molecular Characterization of Tomato brown rugose fruit virus (ToBRFV) on Tomato Plants in the State of Palestine

  • Jamous, Rana Majed;Zaitoun, Salam Yousef Abu;Mallah, Omar Bassam;Ali-Shtayeh, Mohammed Saleem
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.98-107
    • /
    • 2022
  • The incidence of Tomato brown rugose fruit virus (ToBRFV) and biological and molecular characterization of the Palestinian isolates of ToBRFV are described in this study. Symptomatic leaf samples obtained from Solanum lycopersicum L. (tomatoes) and Nicotiana tabacum L. (cultivated tobacco) plants were tested for tobamoviruses infection by reverse transcription polymerase chain reaction. Tomato leaf samples collected from Tulkarm and Qalqilia are infected with ToBRFV-PAL with an infection rate of 76% and 72.5%, respectively. Leaf samples collected from Jenin and Nablus were found to be mixed infected with ToBRFV-PAL and Tobacco mosaic virus (TMV) (100%). Sequence analysis of the ToBRFV-PAL genome showed that the net average nucleotide divergence between ToBRFV/F48-PAL strain and the Israeli and Turkish strains was 0.0026398±0.0006638 (±standard error of mean), while it was 0.0033066±0.0007433 between ToBRFV/F42-PAL and these two isolates. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with the TMV. The sequenced Palestinian isolates of ToBRFV-PAL shared the highest nucleotide identity with the Israeli ToBRFV isolate suggesting that the virus was introduced to Palestine from Israel. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV which would help in the management of the disease.

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

  • Seong Hyeon Yoon;Su Bin Lee;Eseul Baek;Ho-Jong Ju;Ju-Yeon Yoon
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.286-294
    • /
    • 2023
  • Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (formerly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich-enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8-99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8-99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.

Molecular Marker Development for the Rapid Differentiation of Black Rot Causing Xanthomonas campestris pv. campestris Race 7

  • Yeo-Hyeon Kim;Sopheap Mao;Nihar Sahu;Uzzal Somaddar;Hoy-Taek Kim;Masao Watanabe;Jong-In Park
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.494-503
    • /
    • 2023
  • Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.

Molecular characterization of H3N2 influenza A virus isolated from a pig by next generation sequencing in Korea

  • Oh, Yeonsu;Moon, Sung-Hyun;Ko, Young-Seung;Na, Eun-Jee;Tark, Dong-Seob;Oem, Jae-Ku;Kim, Won-Il;Rim, Chaekwang;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Swine influenza (SI) is an important respiratory disease in pigs and epidemic worldwide, which is caused by influenza A virus (IAV) belonging to the family of Orthomyxoviridae. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs, and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/21810/2021 (sw21810, H3N2 subtype). BLASTN sequence analysis of 8 gene segments of the isolated virus revealed a high degree of nucleotide similarity (94.76 to 100%) to porcine strains circulating in Korea and the United States. Out of 8 genome segments, the HA gene was closely related to that of isolates from cluster I. Additionally, the NA gene of the isolate belonged to a Korean Swine H1N1 origin, and the PB2, PB1, NP and NS genes of the isolate were grouped into that of the Triple reassortant swine H3N2 origin virus. The PA and M genes of the isolate belonged to 2009 Pandemic H1N1 lineage. Human infection with mutants was most common through contact with infected pigs. Our results suggest the need for periodic close monitoring of this novel swine H3N2 influenza virus from a public health perspective.

Identification and Expression of Retroviral Envelope Polyprotein in the Dogfish Squalus mitsukurii

  • Kim, Soo Cheol;Sumi, Kanij Rukshana;Choe, Myeong Rak;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Determining the infection history of living organisms is essential for understanding the evolution of infection agents with their host, particularly for key aspects such as immunity. Viruses, which can spread between individuals and often cause disease, have been widely examined. The increasing availability of fish genome sequences has provided specific insights into the diversity and host distribution of retroviruses in fish. The shortspine spurdog (Squalus mitsukurii) is an important elasmobranch species; this medium-sized dogfish typically lives at depths of 100~500 m. However, the retroviral envelope polyprotein in dogfish has not been examined. Thus, the aim of the present study was to identify and analyze the retroviral envelope polyprotein in various tissues of dogfish. The 1334-base pair full-length novel cDNA of dogfish envelope polyprotein (dEnv) was obtained by 3' and 5'-rapid amplification of cDNA end analysis from S. mitsukurii. The open reading frame showed a complete coding sequence of 815 base pairs with a deduced peptide sequence of 183 amino acids that exhibited 34~50% identity with other fish and bird species. It was also expressed according to reverse transcription and real-time polymerase chain reaction in the kidney, liver, intestine, and lung, but not in the gill. This distribution can be assessed by identifying and analyzing endogenous retroviruses in fish, which consists of three main genes: gag, pol and env. Dogfish envelope polyprotein sequence is likely important in evolution and induces rearrangements, altering the regulatory and coding sequences. This is the first report of the identification and molecular characterization of retroviral envelope polyprotein in various tissues of S. mitsukurii.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.